Decoding information in multilayer ecological networks: The keystone species case
- Autores
- Huaylla, Claudia A.; Nacif, Marcos Ezequiel; Coulin, Carolina; Kuperman, Marcelo N.; Garibaldi, Lucas Alejandro
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Huaylla, Claudia A. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.
Fil: Huaylla, Claudia A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.
Fil: Nacif, Marcos E. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.
Fil: Nacif, Marcos E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.
Fil: Coulin, Carolina. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.
Fil: Coulin, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.
Fil: Kuperman, Marcelo N. Centro Atómico Bariloche. Río Negro, Argentina.
Fil: Garibaldi, Lucas A. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.
Fil: Garibaldi, Lucas A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.
The construction of a network capturing the topological structure linked to the interactions among species and the analysis of its properties constitutes a clarifying way to understand the functioning of an ecosystem at different scales of analysis. Here, we present a novel systematic procedure to profit from the enhanced information derived from considering its multiple levels and apply it to analyse the presence of keystone species. The proposed method presents a way to unveil the information stored in a network by comparing it to some randomised modification of itself. The randomising of the original network is done by swapping a controlled number of links while preserving the degree of the nodes. Then, we compare the modularity value of the original network with the randomised counterparts, which gives us a measure of the amount of relevant information stored in the first one. Once we have verified that the modularity value is meaningful, we use it to perform a community analysis and a characterisation of other topological properties in order to identify keystone species. We applied this method to a pollinator–plant–herbivore trophic network as a case study and we found that (a) the comparison between the modularity of the original and the randomised networks is a suitable tool to detect relevant information; and (b) identifying keystone species yields different results in bipartite networks from the ones obtained in networks of more than two trophic levels. We also analysed the effect of eliminating selected species from the system on the cohesion of the network. The selection of these species was made according to the centralities values, such as degree and betweenness, of the corresponding nodes. Our findings show that our analysis, mainly based on the measure of modularity is a reliable tool to characterise ecological networks. Additionally, we argue that since degree and betweenness are not always correlated, it is more reliable to measure both in an attempt to detect keystone species. The methodology proposed here to identify keystone species can be applied to other ecological networks currently available in the literature.
- - Materia
-
Ecología
Matemática Aplicada
Betweenness
Ecosystem
Modularity
Random Networks
Restoration
Trofic Networks
Ecología
Matemática Aplicada - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de Río Negro
- OAI Identificador
- oai:rid.unrn.edu.ar:20.500.12049/7569
Ver los metadatos del registro completo
id |
RIDUNRN_a4a5bd82e03def6133860030bdd7caa5 |
---|---|
oai_identifier_str |
oai:rid.unrn.edu.ar:20.500.12049/7569 |
network_acronym_str |
RIDUNRN |
repository_id_str |
4369 |
network_name_str |
RID-UNRN (UNRN) |
spelling |
Decoding information in multilayer ecological networks: The keystone species caseHuaylla, Claudia A.Nacif, Marcos EzequielCoulin, CarolinaKuperman, Marcelo N.Garibaldi, Lucas AlejandroEcologíaMatemática AplicadaBetweennessEcosystemModularityRandom NetworksRestorationTrofic NetworksEcologíaMatemática AplicadaFil: Huaylla, Claudia A. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.Fil: Huaylla, Claudia A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.Fil: Nacif, Marcos E. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.Fil: Nacif, Marcos E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.Fil: Coulin, Carolina. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.Fil: Coulin, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.Fil: Kuperman, Marcelo N. Centro Atómico Bariloche. Río Negro, Argentina.Fil: Garibaldi, Lucas A. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.Fil: Garibaldi, Lucas A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.The construction of a network capturing the topological structure linked to the interactions among species and the analysis of its properties constitutes a clarifying way to understand the functioning of an ecosystem at different scales of analysis. Here, we present a novel systematic procedure to profit from the enhanced information derived from considering its multiple levels and apply it to analyse the presence of keystone species. The proposed method presents a way to unveil the information stored in a network by comparing it to some randomised modification of itself. The randomising of the original network is done by swapping a controlled number of links while preserving the degree of the nodes. Then, we compare the modularity value of the original network with the randomised counterparts, which gives us a measure of the amount of relevant information stored in the first one. Once we have verified that the modularity value is meaningful, we use it to perform a community analysis and a characterisation of other topological properties in order to identify keystone species. We applied this method to a pollinator–plant–herbivore trophic network as a case study and we found that (a) the comparison between the modularity of the original and the randomised networks is a suitable tool to detect relevant information; and (b) identifying keystone species yields different results in bipartite networks from the ones obtained in networks of more than two trophic levels. We also analysed the effect of eliminating selected species from the system on the cohesion of the network. The selection of these species was made according to the centralities values, such as degree and betweenness, of the corresponding nodes. Our findings show that our analysis, mainly based on the measure of modularity is a reliable tool to characterise ecological networks. Additionally, we argue that since degree and betweenness are not always correlated, it is more reliable to measure both in an attempt to detect keystone species. The methodology proposed here to identify keystone species can be applied to other ecological networks currently available in the literature.-Elsevier2021-11-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfHuaylla C. A, Nacif M. E, Coulin C., Kuperman M. N. y Garibaldi L. A, et al. (2021) Decoding information in multilayer ecological networks: the keystone species case. Ecological Modelling; 460;109734.0304-3800https://www.sciencedirect.com/science/article/pii/S0304380021002842?via%3Dihubhttp://rid.unrn.edu.ar/handle/20.500.12049/7569https://doi.org/10.1016/j.ecolmodel.2021.109734enghttp://www.journals.elsevier.com/ecological-modelling/460Ecological Modellinginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-29T14:29:13Zoai:rid.unrn.edu.ar:20.500.12049/7569instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-29 14:29:14.103RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse |
dc.title.none.fl_str_mv |
Decoding information in multilayer ecological networks: The keystone species case |
title |
Decoding information in multilayer ecological networks: The keystone species case |
spellingShingle |
Decoding information in multilayer ecological networks: The keystone species case Huaylla, Claudia A. Ecología Matemática Aplicada Betweenness Ecosystem Modularity Random Networks Restoration Trofic Networks Ecología Matemática Aplicada |
title_short |
Decoding information in multilayer ecological networks: The keystone species case |
title_full |
Decoding information in multilayer ecological networks: The keystone species case |
title_fullStr |
Decoding information in multilayer ecological networks: The keystone species case |
title_full_unstemmed |
Decoding information in multilayer ecological networks: The keystone species case |
title_sort |
Decoding information in multilayer ecological networks: The keystone species case |
dc.creator.none.fl_str_mv |
Huaylla, Claudia A. Nacif, Marcos Ezequiel Coulin, Carolina Kuperman, Marcelo N. Garibaldi, Lucas Alejandro |
author |
Huaylla, Claudia A. |
author_facet |
Huaylla, Claudia A. Nacif, Marcos Ezequiel Coulin, Carolina Kuperman, Marcelo N. Garibaldi, Lucas Alejandro |
author_role |
author |
author2 |
Nacif, Marcos Ezequiel Coulin, Carolina Kuperman, Marcelo N. Garibaldi, Lucas Alejandro |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ecología Matemática Aplicada Betweenness Ecosystem Modularity Random Networks Restoration Trofic Networks Ecología Matemática Aplicada |
topic |
Ecología Matemática Aplicada Betweenness Ecosystem Modularity Random Networks Restoration Trofic Networks Ecología Matemática Aplicada |
dc.description.none.fl_txt_mv |
Fil: Huaylla, Claudia A. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina. Fil: Huaylla, Claudia A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina. Fil: Nacif, Marcos E. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina. Fil: Nacif, Marcos E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina. Fil: Coulin, Carolina. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina. Fil: Coulin, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina. Fil: Kuperman, Marcelo N. Centro Atómico Bariloche. Río Negro, Argentina. Fil: Garibaldi, Lucas A. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina. Fil: Garibaldi, Lucas A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina. The construction of a network capturing the topological structure linked to the interactions among species and the analysis of its properties constitutes a clarifying way to understand the functioning of an ecosystem at different scales of analysis. Here, we present a novel systematic procedure to profit from the enhanced information derived from considering its multiple levels and apply it to analyse the presence of keystone species. The proposed method presents a way to unveil the information stored in a network by comparing it to some randomised modification of itself. The randomising of the original network is done by swapping a controlled number of links while preserving the degree of the nodes. Then, we compare the modularity value of the original network with the randomised counterparts, which gives us a measure of the amount of relevant information stored in the first one. Once we have verified that the modularity value is meaningful, we use it to perform a community analysis and a characterisation of other topological properties in order to identify keystone species. We applied this method to a pollinator–plant–herbivore trophic network as a case study and we found that (a) the comparison between the modularity of the original and the randomised networks is a suitable tool to detect relevant information; and (b) identifying keystone species yields different results in bipartite networks from the ones obtained in networks of more than two trophic levels. We also analysed the effect of eliminating selected species from the system on the cohesion of the network. The selection of these species was made according to the centralities values, such as degree and betweenness, of the corresponding nodes. Our findings show that our analysis, mainly based on the measure of modularity is a reliable tool to characterise ecological networks. Additionally, we argue that since degree and betweenness are not always correlated, it is more reliable to measure both in an attempt to detect keystone species. The methodology proposed here to identify keystone species can be applied to other ecological networks currently available in the literature. - |
description |
Fil: Huaylla, Claudia A. Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Huaylla C. A, Nacif M. E, Coulin C., Kuperman M. N. y Garibaldi L. A, et al. (2021) Decoding information in multilayer ecological networks: the keystone species case. Ecological Modelling; 460;109734. 0304-3800 https://www.sciencedirect.com/science/article/pii/S0304380021002842?via%3Dihub http://rid.unrn.edu.ar/handle/20.500.12049/7569 https://doi.org/10.1016/j.ecolmodel.2021.109734 |
identifier_str_mv |
Huaylla C. A, Nacif M. E, Coulin C., Kuperman M. N. y Garibaldi L. A, et al. (2021) Decoding information in multilayer ecological networks: the keystone species case. Ecological Modelling; 460;109734. 0304-3800 |
url |
https://www.sciencedirect.com/science/article/pii/S0304380021002842?via%3Dihub http://rid.unrn.edu.ar/handle/20.500.12049/7569 https://doi.org/10.1016/j.ecolmodel.2021.109734 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.journals.elsevier.com/ecological-modelling/ 460 Ecological Modelling |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:RID-UNRN (UNRN) instname:Universidad Nacional de Río Negro |
reponame_str |
RID-UNRN (UNRN) |
collection |
RID-UNRN (UNRN) |
instname_str |
Universidad Nacional de Río Negro |
repository.name.fl_str_mv |
RID-UNRN (UNRN) - Universidad Nacional de Río Negro |
repository.mail.fl_str_mv |
rid@unrn.edu.ar |
_version_ |
1844621615818604544 |
score |
12.559606 |