Representación matemática de ondas cerebrales

Autores
Arriola, Juan M.
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
tesis de maestría
Estado
versión aceptada
Colaborador/a o director/a de tesis
Castro, Liliana Raquel
Álvarez, Marcela P.
Descripción
Las señales electroencefalográficas, o señales EEG, son registros que se obtienen al medir las corrientes eléctricas que viajan a través del cerebro. En ellas es posible encontrar información no sólo sobre la actividad cerebral sino también sobre las zonas del cerebro que intervienen en actividades específicas. Procesar la información presente en estas señales es fundamental para poder comprender en profundidad el funcionamiento del cerebro. En particular, cuando las funciones cerebrales se ven alteradas por el consumo de sustancias psicoactivas, enfermedades degenerativas u otros daños, el procesamiento de las señales EEG permite obtener información sobre qué zonas están dañadas y en qué medida. En ese sentido, el principal objetivo de esta tesis es procesar la información presente en las señales EEG mediante la utilización de la Transformada Wavelet y, de esta manera, poder cuantificar e identificar las diferencias entre el funcionamiento de un cerebro "sano" y otro dañado, o estudiar de qué manera trabaja el cerebro sometido a diferentes estímulos. El objetivo secundario es mostrar que la automatización en la identificación y clasificación de la información obtenida podría ser posible mediante redes neuronales artificiales. Procesando dos bases de datos diferentes, pudimos constatar que las variables cuantitativas obtenidas permiten caracterizar la actividad cerebral, y que dicha caracterización puede ser automáticamente clasificada mediante redes neuronales artificiales. En el primer caso, logramos clasificar una población sujetos en dos grupos, alcohólicos y control, procesando las señales EEG obtenidas a partir de someter a los sujetos a estímulos visuales. En el segundo caso encontramos evidencia de que diferentes emociones evocadas por estímulos audiovisuales producen diferencias detectables en las señales EEG, aunque no logramos automatizar la clasificación de la información. Los resultados obtenidos en la primera aplicación constituyen un aporte en la obtención de mecanismos que contribuyan al diagnóstico de daños ocasionados por consumo de sustancias psicoactivas.
Electroencephalographic signals, or EEG signals are signals obtained by measuring the electrical currents that travel through the brain. These signals not only provide information on brain activity but also give an insight of the brain regions involved in especific activities. To fully understand how the brain works, is critical to process that information. In particular, when brain functions are affected by the abuse of psychoactive substances, degenerative diseases or other damages, the processing of EEG signals allows to obtain information about the extent of the damaged areas. In that sense, the main objective of this thesis is to extract the information from the EEG signals using the Wavelet Transform, and then quantify and identify the differences between the performance of a "healthy" brain and a damaged one, or study how the brain of different subjects perform different to stimuli. The secondary objective is to show that the identification and classification of the information could be done automatically using artificial neural networks. The processing of two different databases showed that it is possible to characterize brain activity using the quantitative variables we obteined, and that such characterization can be used to perform an automatic classification using artificial neural networks. In the first case, we successfully classified subjects into two groups, alcoholics and control, using processed EEG signals obtained from subjects exited by visual stimuli. In the second case we found evidence that different emotions evoked by audiovisual stimuli produce detectable differences in EEG signals, although we could not perform an automatic classification of the information. The results obtained in the first application constitute a contribution in the development of mechanisms that contribute to diagnose the damage produced by psychoactive substance abuse.
Fil: Arriola, Juan M.. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Materia
Matemáticas
Electroencefalografía
Redes neuronales
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
Institución
Universidad Nacional del Sur
OAI Identificador
oai:repositorio.bc.uns.edu.ar:123456789/2787

id RID-UNS_c0310d4daf4fb077bce06fa03e622394
oai_identifier_str oai:repositorio.bc.uns.edu.ar:123456789/2787
network_acronym_str RID-UNS
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
spelling Representación matemática de ondas cerebralesArriola, Juan M.MatemáticasElectroencefalografíaRedes neuronalesLas señales electroencefalográficas, o señales EEG, son registros que se obtienen al medir las corrientes eléctricas que viajan a través del cerebro. En ellas es posible encontrar información no sólo sobre la actividad cerebral sino también sobre las zonas del cerebro que intervienen en actividades específicas. Procesar la información presente en estas señales es fundamental para poder comprender en profundidad el funcionamiento del cerebro. En particular, cuando las funciones cerebrales se ven alteradas por el consumo de sustancias psicoactivas, enfermedades degenerativas u otros daños, el procesamiento de las señales EEG permite obtener información sobre qué zonas están dañadas y en qué medida. En ese sentido, el principal objetivo de esta tesis es procesar la información presente en las señales EEG mediante la utilización de la Transformada Wavelet y, de esta manera, poder cuantificar e identificar las diferencias entre el funcionamiento de un cerebro "sano" y otro dañado, o estudiar de qué manera trabaja el cerebro sometido a diferentes estímulos. El objetivo secundario es mostrar que la automatización en la identificación y clasificación de la información obtenida podría ser posible mediante redes neuronales artificiales. Procesando dos bases de datos diferentes, pudimos constatar que las variables cuantitativas obtenidas permiten caracterizar la actividad cerebral, y que dicha caracterización puede ser automáticamente clasificada mediante redes neuronales artificiales. En el primer caso, logramos clasificar una población sujetos en dos grupos, alcohólicos y control, procesando las señales EEG obtenidas a partir de someter a los sujetos a estímulos visuales. En el segundo caso encontramos evidencia de que diferentes emociones evocadas por estímulos audiovisuales producen diferencias detectables en las señales EEG, aunque no logramos automatizar la clasificación de la información. Los resultados obtenidos en la primera aplicación constituyen un aporte en la obtención de mecanismos que contribuyan al diagnóstico de daños ocasionados por consumo de sustancias psicoactivas.Electroencephalographic signals, or EEG signals are signals obtained by measuring the electrical currents that travel through the brain. These signals not only provide information on brain activity but also give an insight of the brain regions involved in especific activities. To fully understand how the brain works, is critical to process that information. In particular, when brain functions are affected by the abuse of psychoactive substances, degenerative diseases or other damages, the processing of EEG signals allows to obtain information about the extent of the damaged areas. In that sense, the main objective of this thesis is to extract the information from the EEG signals using the Wavelet Transform, and then quantify and identify the differences between the performance of a "healthy" brain and a damaged one, or study how the brain of different subjects perform different to stimuli. The secondary objective is to show that the identification and classification of the information could be done automatically using artificial neural networks. The processing of two different databases showed that it is possible to characterize brain activity using the quantitative variables we obteined, and that such characterization can be used to perform an automatic classification using artificial neural networks. In the first case, we successfully classified subjects into two groups, alcoholics and control, using processed EEG signals obtained from subjects exited by visual stimuli. In the second case we found evidence that different emotions evoked by audiovisual stimuli produce detectable differences in EEG signals, although we could not perform an automatic classification of the information. The results obtained in the first application constitute a contribution in the development of mechanisms that contribute to diagnose the damage produced by psychoactive substance abuse.Fil: Arriola, Juan M.. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaCastro, Liliana RaquelÁlvarez, Marcela P.2016-07-14info:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_bdccinfo:ar-repo/semantics/tesisDeMaestriaapplication/pdfhttp://repositoriodigital.uns.edu.ar/handle/123456789/2787spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)instname:Universidad Nacional del Sur2025-09-04T09:44:43Zoai:repositorio.bc.uns.edu.ar:123456789/2787instacron:UNSInstitucionalhttp://repositoriodigital.uns.edu.ar/Universidad públicaNo correspondehttp://repositoriodigital.uns.edu.ar/oaimesnaola@uns.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:2025-09-04 09:44:43.599Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Surfalse
dc.title.none.fl_str_mv Representación matemática de ondas cerebrales
title Representación matemática de ondas cerebrales
spellingShingle Representación matemática de ondas cerebrales
Arriola, Juan M.
Matemáticas
Electroencefalografía
Redes neuronales
title_short Representación matemática de ondas cerebrales
title_full Representación matemática de ondas cerebrales
title_fullStr Representación matemática de ondas cerebrales
title_full_unstemmed Representación matemática de ondas cerebrales
title_sort Representación matemática de ondas cerebrales
dc.creator.none.fl_str_mv Arriola, Juan M.
author Arriola, Juan M.
author_facet Arriola, Juan M.
author_role author
dc.contributor.none.fl_str_mv Castro, Liliana Raquel
Álvarez, Marcela P.
dc.subject.none.fl_str_mv Matemáticas
Electroencefalografía
Redes neuronales
topic Matemáticas
Electroencefalografía
Redes neuronales
dc.description.none.fl_txt_mv Las señales electroencefalográficas, o señales EEG, son registros que se obtienen al medir las corrientes eléctricas que viajan a través del cerebro. En ellas es posible encontrar información no sólo sobre la actividad cerebral sino también sobre las zonas del cerebro que intervienen en actividades específicas. Procesar la información presente en estas señales es fundamental para poder comprender en profundidad el funcionamiento del cerebro. En particular, cuando las funciones cerebrales se ven alteradas por el consumo de sustancias psicoactivas, enfermedades degenerativas u otros daños, el procesamiento de las señales EEG permite obtener información sobre qué zonas están dañadas y en qué medida. En ese sentido, el principal objetivo de esta tesis es procesar la información presente en las señales EEG mediante la utilización de la Transformada Wavelet y, de esta manera, poder cuantificar e identificar las diferencias entre el funcionamiento de un cerebro "sano" y otro dañado, o estudiar de qué manera trabaja el cerebro sometido a diferentes estímulos. El objetivo secundario es mostrar que la automatización en la identificación y clasificación de la información obtenida podría ser posible mediante redes neuronales artificiales. Procesando dos bases de datos diferentes, pudimos constatar que las variables cuantitativas obtenidas permiten caracterizar la actividad cerebral, y que dicha caracterización puede ser automáticamente clasificada mediante redes neuronales artificiales. En el primer caso, logramos clasificar una población sujetos en dos grupos, alcohólicos y control, procesando las señales EEG obtenidas a partir de someter a los sujetos a estímulos visuales. En el segundo caso encontramos evidencia de que diferentes emociones evocadas por estímulos audiovisuales producen diferencias detectables en las señales EEG, aunque no logramos automatizar la clasificación de la información. Los resultados obtenidos en la primera aplicación constituyen un aporte en la obtención de mecanismos que contribuyan al diagnóstico de daños ocasionados por consumo de sustancias psicoactivas.
Electroencephalographic signals, or EEG signals are signals obtained by measuring the electrical currents that travel through the brain. These signals not only provide information on brain activity but also give an insight of the brain regions involved in especific activities. To fully understand how the brain works, is critical to process that information. In particular, when brain functions are affected by the abuse of psychoactive substances, degenerative diseases or other damages, the processing of EEG signals allows to obtain information about the extent of the damaged areas. In that sense, the main objective of this thesis is to extract the information from the EEG signals using the Wavelet Transform, and then quantify and identify the differences between the performance of a "healthy" brain and a damaged one, or study how the brain of different subjects perform different to stimuli. The secondary objective is to show that the identification and classification of the information could be done automatically using artificial neural networks. The processing of two different databases showed that it is possible to characterize brain activity using the quantitative variables we obteined, and that such characterization can be used to perform an automatic classification using artificial neural networks. In the first case, we successfully classified subjects into two groups, alcoholics and control, using processed EEG signals obtained from subjects exited by visual stimuli. In the second case we found evidence that different emotions evoked by audiovisual stimuli produce detectable differences in EEG signals, although we could not perform an automatic classification of the information. The results obtained in the first application constitute a contribution in the development of mechanisms that contribute to diagnose the damage produced by psychoactive substance abuse.
Fil: Arriola, Juan M.. Universidad Nacional del Sur. Departamento de Matemática; Argentina
description Las señales electroencefalográficas, o señales EEG, son registros que se obtienen al medir las corrientes eléctricas que viajan a través del cerebro. En ellas es posible encontrar información no sólo sobre la actividad cerebral sino también sobre las zonas del cerebro que intervienen en actividades específicas. Procesar la información presente en estas señales es fundamental para poder comprender en profundidad el funcionamiento del cerebro. En particular, cuando las funciones cerebrales se ven alteradas por el consumo de sustancias psicoactivas, enfermedades degenerativas u otros daños, el procesamiento de las señales EEG permite obtener información sobre qué zonas están dañadas y en qué medida. En ese sentido, el principal objetivo de esta tesis es procesar la información presente en las señales EEG mediante la utilización de la Transformada Wavelet y, de esta manera, poder cuantificar e identificar las diferencias entre el funcionamiento de un cerebro "sano" y otro dañado, o estudiar de qué manera trabaja el cerebro sometido a diferentes estímulos. El objetivo secundario es mostrar que la automatización en la identificación y clasificación de la información obtenida podría ser posible mediante redes neuronales artificiales. Procesando dos bases de datos diferentes, pudimos constatar que las variables cuantitativas obtenidas permiten caracterizar la actividad cerebral, y que dicha caracterización puede ser automáticamente clasificada mediante redes neuronales artificiales. En el primer caso, logramos clasificar una población sujetos en dos grupos, alcohólicos y control, procesando las señales EEG obtenidas a partir de someter a los sujetos a estímulos visuales. En el segundo caso encontramos evidencia de que diferentes emociones evocadas por estímulos audiovisuales producen diferencias detectables en las señales EEG, aunque no logramos automatizar la clasificación de la información. Los resultados obtenidos en la primera aplicación constituyen un aporte en la obtención de mecanismos que contribuyan al diagnóstico de daños ocasionados por consumo de sustancias psicoactivas.
publishDate 2016
dc.date.none.fl_str_mv 2016-07-14
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_bdcc
info:ar-repo/semantics/tesisDeMaestria
format masterThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://repositoriodigital.uns.edu.ar/handle/123456789/2787
url http://repositoriodigital.uns.edu.ar/handle/123456789/2787
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname:Universidad Nacional del Sur
reponame_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
collection Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname_str Universidad Nacional del Sur
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Sur
repository.mail.fl_str_mv mesnaola@uns.edu.ar
_version_ 1842341315666247680
score 12.623145