Preparación y caracterización de partículas de magnetita soportadas sobre láminas de montmorillonita : uso en la remoción de aniones y cationes de interés ambiental

Autores
Pecini, Eliana Melisa
Año de publicación
2019
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Avena, Marcelo J.
Descripción
Entre las diferentes tecnologías que existen para eliminar contaminantes del agua, la adsorción se presenta como uno de los métodos más eficientes, económicos y fáciles de desarrollar técnicamente. Sin embargo, después de llevar a cabo la adsorción, los adsorbentes son difíciles de separar de la solución utilizando técnicas de separación tradicionales. En los últimos años, los adsorbentes magnéticos han surgido como una nueva generación de materiales para la descontaminación ambiental. Este método de separación simplemente implica la aplicación de un campo magnético externo que puede ser generado por diferentes fuentes (por ejemplo, imanes permanentes, corrientes alternas, etc.) para extraer el adsorbente. En este trabajo de tesis se propone un nuevo material adsorbente de fácil recuperación formado por nanopartículas de magnetita y montmorillonita para su posterior uso en la remoción de cationes y aniones de interés ambiental, utilizando al azul de metileno como representante de un contaminante catiónico y orgánico, y al arsénico (arseniato y sus especies protonadas en medio acuoso) como representante de contaminantes aniónicos e inorgánicos. A continuación se presenta un estudio sistemático de las propiedades de cada uno de los sólidos, comenzando por una caracterización general de las fases cristalinas y sus partículas, siguiendo por las propiedades reactivas de las superficies y culminando con la evaluación de las capacidades de adsorción frente a sustancias contaminantes. En cuanto a la reactividad superficial cabe mencionar que se evalúa con detenimiento la reactividad de los grupos superficiales en cada sólido, sus propiedades de protonación-desprotonación, de complejación superficial y de desarrollo de cargas eléctricas estructurales y superficiales en diferentes planos o caras cristalinas. Además se desarrolla un método sencillo para cuantificar la velocidad de captación de partículas magnéticas por campos magnéticos. Los resultados muestran que la montmorillonita posee una gran capacidad para captar el azul de metileno y una nula capacidad para adsorber al As(V). Por el contrario, la magnetita y otras nanopartículas magnéticas como las ferritas de níquel resultaron ser muy buenas adsorbentes de As(V) y muy malas adsorbentes de azul de metileno. Las mezclas magnetita-montmorillonita se comportaron como heteroagregados frente a campos eléctricos y campos magnéticos aplicados. Sin embargo, en estudios de adsorción, cada sólido adsorbió de manera independiente las sustancia por la que tiene alta afinidad. Estas conclusiones están demostradas por un conjunto muy variado de estudios por medio de espectroscopías, difractometría, microscopías, adsorción de gases, isotermas de adsorción, movilidades electroforéticas, etc., en diversas condiciones experimentales. Por último, la comprensión de los procesos básicos de adsorción aportó una base sólida para entender cómo se comportan los sistemas estudiados y porqué lo hacen de esa manera, tanto en sistemas puros como en mezclas magnetita-montmorillonita. Tal entendimiento permite ahora predecir el comportamiento del sistema en muy variadas condiciones de trabajo y sintonizar sus propiedades para que adsorba el contaminante deseado en las cantidades requeridas.
Among the different existing technologies to remove pollutants contaminants from water, adsorption has become one of the most efficient, economical and less difficult to carry out technically. In spite of this, after adsorption took place, the adsorbents are usually difficult to separate from the solution using traditional separation techniques. In the past few years, magnetic adsorbents have emerged as a new generation of materials for environmental decontamination. The separation with these materials simply involves the application of an external magnetic field that can be generated by different sources (e.g., permanent magnets, alternating currents, etc.) to extract the adsorbent with the attached pollutant. In this thesis, a new easy-to-recover adsorbent material is developed and proposed. It is constituted by magnetite and montmorillonite nanoparticles and used in the removal of cations and anions of environmental interest, employing methylene blue as the representative of a cationic and organic contaminant, and arsenic (arsenate and its protonated species in aqueous media) as the representative of anionic and inorganic contaminants. A systematic study of the properties of each solid, starting with a general characterization of the crystalline phases and their particles, followed by an investigation of the reactive properties of their surfaces, and ending with the evaluation of the adsorption capacities of the mentioned pollutants is presented. Regarding the surface reactivity, the reactive properties of the surface groups in each solid, their protonation-deprotonation behavior, the formation of surface complexes, and the development of structural and surface charges in different crystalline planes are carefully evaluated. In addition, a simple method is developed to quantify the rate of uptake of magnetic nanoparticles particle by external magnetic fields. The obtained results show that montmorillonite has a great capacity to uptake methylene blue and zero capacity to adsorb As(V). In contrast, magnetite and other magnetic nanoparticles such as nickel ferrites turned out to be very good As(V) adsorbents and very poor methylene blue adsorbents. The magnetite-montmorillonite mixtures behaved as heteroaggregates in the presence of applied electric fields and magnetic fields. However, in adsorption studies, each solid independently adsorbed the substance for which it has affinity. These conclusions are demonstrated by a very diverse set of studies by means of spectroscopy, diffractometry, microscopy, gas adsorption, adsorption isotherms, electrophoretic mobilities, etc., in various experimental conditions. Finally, the understanding of the basic processes taking place during adsorption provided a solid basis to understand how the studied systems behave and why they do it that way, both in pure systems and in magnetite-montmorillonite mixtures. Such understanding allows to predict the behavior of the system in different working conditions and to tune its properties so that it adsorbs the desired pollutant in the required quantities.
Fil: Pecini, Eliana Melisa. Universidad Nacional del Sur. Departamento de Química; Argentina
Materia
Química
Magnetita
Arsénico
Adsorción
Punto isoeléctrico
Remediación
Montmorillonita
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
Institución
Universidad Nacional del Sur
OAI Identificador
oai:repositorio.bc.uns.edu.ar:123456789/4497

id RID-UNS_634c654a3fc7ac7981241f014d8b5e27
oai_identifier_str oai:repositorio.bc.uns.edu.ar:123456789/4497
network_acronym_str RID-UNS
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
spelling Preparación y caracterización de partículas de magnetita soportadas sobre láminas de montmorillonita : uso en la remoción de aniones y cationes de interés ambientalPecini, Eliana MelisaQuímicaMagnetitaArsénicoAdsorciónPunto isoeléctricoRemediaciónMontmorillonitaEntre las diferentes tecnologías que existen para eliminar contaminantes del agua, la adsorción se presenta como uno de los métodos más eficientes, económicos y fáciles de desarrollar técnicamente. Sin embargo, después de llevar a cabo la adsorción, los adsorbentes son difíciles de separar de la solución utilizando técnicas de separación tradicionales. En los últimos años, los adsorbentes magnéticos han surgido como una nueva generación de materiales para la descontaminación ambiental. Este método de separación simplemente implica la aplicación de un campo magnético externo que puede ser generado por diferentes fuentes (por ejemplo, imanes permanentes, corrientes alternas, etc.) para extraer el adsorbente. En este trabajo de tesis se propone un nuevo material adsorbente de fácil recuperación formado por nanopartículas de magnetita y montmorillonita para su posterior uso en la remoción de cationes y aniones de interés ambiental, utilizando al azul de metileno como representante de un contaminante catiónico y orgánico, y al arsénico (arseniato y sus especies protonadas en medio acuoso) como representante de contaminantes aniónicos e inorgánicos. A continuación se presenta un estudio sistemático de las propiedades de cada uno de los sólidos, comenzando por una caracterización general de las fases cristalinas y sus partículas, siguiendo por las propiedades reactivas de las superficies y culminando con la evaluación de las capacidades de adsorción frente a sustancias contaminantes. En cuanto a la reactividad superficial cabe mencionar que se evalúa con detenimiento la reactividad de los grupos superficiales en cada sólido, sus propiedades de protonación-desprotonación, de complejación superficial y de desarrollo de cargas eléctricas estructurales y superficiales en diferentes planos o caras cristalinas. Además se desarrolla un método sencillo para cuantificar la velocidad de captación de partículas magnéticas por campos magnéticos. Los resultados muestran que la montmorillonita posee una gran capacidad para captar el azul de metileno y una nula capacidad para adsorber al As(V). Por el contrario, la magnetita y otras nanopartículas magnéticas como las ferritas de níquel resultaron ser muy buenas adsorbentes de As(V) y muy malas adsorbentes de azul de metileno. Las mezclas magnetita-montmorillonita se comportaron como heteroagregados frente a campos eléctricos y campos magnéticos aplicados. Sin embargo, en estudios de adsorción, cada sólido adsorbió de manera independiente las sustancia por la que tiene alta afinidad. Estas conclusiones están demostradas por un conjunto muy variado de estudios por medio de espectroscopías, difractometría, microscopías, adsorción de gases, isotermas de adsorción, movilidades electroforéticas, etc., en diversas condiciones experimentales. Por último, la comprensión de los procesos básicos de adsorción aportó una base sólida para entender cómo se comportan los sistemas estudiados y porqué lo hacen de esa manera, tanto en sistemas puros como en mezclas magnetita-montmorillonita. Tal entendimiento permite ahora predecir el comportamiento del sistema en muy variadas condiciones de trabajo y sintonizar sus propiedades para que adsorba el contaminante deseado en las cantidades requeridas.Among the different existing technologies to remove pollutants contaminants from water, adsorption has become one of the most efficient, economical and less difficult to carry out technically. In spite of this, after adsorption took place, the adsorbents are usually difficult to separate from the solution using traditional separation techniques. In the past few years, magnetic adsorbents have emerged as a new generation of materials for environmental decontamination. The separation with these materials simply involves the application of an external magnetic field that can be generated by different sources (e.g., permanent magnets, alternating currents, etc.) to extract the adsorbent with the attached pollutant. In this thesis, a new easy-to-recover adsorbent material is developed and proposed. It is constituted by magnetite and montmorillonite nanoparticles and used in the removal of cations and anions of environmental interest, employing methylene blue as the representative of a cationic and organic contaminant, and arsenic (arsenate and its protonated species in aqueous media) as the representative of anionic and inorganic contaminants. A systematic study of the properties of each solid, starting with a general characterization of the crystalline phases and their particles, followed by an investigation of the reactive properties of their surfaces, and ending with the evaluation of the adsorption capacities of the mentioned pollutants is presented. Regarding the surface reactivity, the reactive properties of the surface groups in each solid, their protonation-deprotonation behavior, the formation of surface complexes, and the development of structural and surface charges in different crystalline planes are carefully evaluated. In addition, a simple method is developed to quantify the rate of uptake of magnetic nanoparticles particle by external magnetic fields. The obtained results show that montmorillonite has a great capacity to uptake methylene blue and zero capacity to adsorb As(V). In contrast, magnetite and other magnetic nanoparticles such as nickel ferrites turned out to be very good As(V) adsorbents and very poor methylene blue adsorbents. The magnetite-montmorillonite mixtures behaved as heteroaggregates in the presence of applied electric fields and magnetic fields. However, in adsorption studies, each solid independently adsorbed the substance for which it has affinity. These conclusions are demonstrated by a very diverse set of studies by means of spectroscopy, diffractometry, microscopy, gas adsorption, adsorption isotherms, electrophoretic mobilities, etc., in various experimental conditions. Finally, the understanding of the basic processes taking place during adsorption provided a solid basis to understand how the studied systems behave and why they do it that way, both in pure systems and in magnetite-montmorillonite mixtures. Such understanding allows to predict the behavior of the system in different working conditions and to tune its properties so that it adsorbs the desired pollutant in the required quantities.Fil: Pecini, Eliana Melisa. Universidad Nacional del Sur. Departamento de Química; ArgentinaAvena, Marcelo J.2019-03-21info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://repositoriodigital.uns.edu.ar/handle/123456789/4497spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)instname:Universidad Nacional del Sur2025-09-04T09:44:50Zoai:repositorio.bc.uns.edu.ar:123456789/4497instacron:UNSInstitucionalhttp://repositoriodigital.uns.edu.ar/Universidad públicaNo correspondehttp://repositoriodigital.uns.edu.ar/oaimesnaola@uns.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:2025-09-04 09:44:50.982Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Surfalse
dc.title.none.fl_str_mv Preparación y caracterización de partículas de magnetita soportadas sobre láminas de montmorillonita : uso en la remoción de aniones y cationes de interés ambiental
title Preparación y caracterización de partículas de magnetita soportadas sobre láminas de montmorillonita : uso en la remoción de aniones y cationes de interés ambiental
spellingShingle Preparación y caracterización de partículas de magnetita soportadas sobre láminas de montmorillonita : uso en la remoción de aniones y cationes de interés ambiental
Pecini, Eliana Melisa
Química
Magnetita
Arsénico
Adsorción
Punto isoeléctrico
Remediación
Montmorillonita
title_short Preparación y caracterización de partículas de magnetita soportadas sobre láminas de montmorillonita : uso en la remoción de aniones y cationes de interés ambiental
title_full Preparación y caracterización de partículas de magnetita soportadas sobre láminas de montmorillonita : uso en la remoción de aniones y cationes de interés ambiental
title_fullStr Preparación y caracterización de partículas de magnetita soportadas sobre láminas de montmorillonita : uso en la remoción de aniones y cationes de interés ambiental
title_full_unstemmed Preparación y caracterización de partículas de magnetita soportadas sobre láminas de montmorillonita : uso en la remoción de aniones y cationes de interés ambiental
title_sort Preparación y caracterización de partículas de magnetita soportadas sobre láminas de montmorillonita : uso en la remoción de aniones y cationes de interés ambiental
dc.creator.none.fl_str_mv Pecini, Eliana Melisa
author Pecini, Eliana Melisa
author_facet Pecini, Eliana Melisa
author_role author
dc.contributor.none.fl_str_mv Avena, Marcelo J.
dc.subject.none.fl_str_mv Química
Magnetita
Arsénico
Adsorción
Punto isoeléctrico
Remediación
Montmorillonita
topic Química
Magnetita
Arsénico
Adsorción
Punto isoeléctrico
Remediación
Montmorillonita
dc.description.none.fl_txt_mv Entre las diferentes tecnologías que existen para eliminar contaminantes del agua, la adsorción se presenta como uno de los métodos más eficientes, económicos y fáciles de desarrollar técnicamente. Sin embargo, después de llevar a cabo la adsorción, los adsorbentes son difíciles de separar de la solución utilizando técnicas de separación tradicionales. En los últimos años, los adsorbentes magnéticos han surgido como una nueva generación de materiales para la descontaminación ambiental. Este método de separación simplemente implica la aplicación de un campo magnético externo que puede ser generado por diferentes fuentes (por ejemplo, imanes permanentes, corrientes alternas, etc.) para extraer el adsorbente. En este trabajo de tesis se propone un nuevo material adsorbente de fácil recuperación formado por nanopartículas de magnetita y montmorillonita para su posterior uso en la remoción de cationes y aniones de interés ambiental, utilizando al azul de metileno como representante de un contaminante catiónico y orgánico, y al arsénico (arseniato y sus especies protonadas en medio acuoso) como representante de contaminantes aniónicos e inorgánicos. A continuación se presenta un estudio sistemático de las propiedades de cada uno de los sólidos, comenzando por una caracterización general de las fases cristalinas y sus partículas, siguiendo por las propiedades reactivas de las superficies y culminando con la evaluación de las capacidades de adsorción frente a sustancias contaminantes. En cuanto a la reactividad superficial cabe mencionar que se evalúa con detenimiento la reactividad de los grupos superficiales en cada sólido, sus propiedades de protonación-desprotonación, de complejación superficial y de desarrollo de cargas eléctricas estructurales y superficiales en diferentes planos o caras cristalinas. Además se desarrolla un método sencillo para cuantificar la velocidad de captación de partículas magnéticas por campos magnéticos. Los resultados muestran que la montmorillonita posee una gran capacidad para captar el azul de metileno y una nula capacidad para adsorber al As(V). Por el contrario, la magnetita y otras nanopartículas magnéticas como las ferritas de níquel resultaron ser muy buenas adsorbentes de As(V) y muy malas adsorbentes de azul de metileno. Las mezclas magnetita-montmorillonita se comportaron como heteroagregados frente a campos eléctricos y campos magnéticos aplicados. Sin embargo, en estudios de adsorción, cada sólido adsorbió de manera independiente las sustancia por la que tiene alta afinidad. Estas conclusiones están demostradas por un conjunto muy variado de estudios por medio de espectroscopías, difractometría, microscopías, adsorción de gases, isotermas de adsorción, movilidades electroforéticas, etc., en diversas condiciones experimentales. Por último, la comprensión de los procesos básicos de adsorción aportó una base sólida para entender cómo se comportan los sistemas estudiados y porqué lo hacen de esa manera, tanto en sistemas puros como en mezclas magnetita-montmorillonita. Tal entendimiento permite ahora predecir el comportamiento del sistema en muy variadas condiciones de trabajo y sintonizar sus propiedades para que adsorba el contaminante deseado en las cantidades requeridas.
Among the different existing technologies to remove pollutants contaminants from water, adsorption has become one of the most efficient, economical and less difficult to carry out technically. In spite of this, after adsorption took place, the adsorbents are usually difficult to separate from the solution using traditional separation techniques. In the past few years, magnetic adsorbents have emerged as a new generation of materials for environmental decontamination. The separation with these materials simply involves the application of an external magnetic field that can be generated by different sources (e.g., permanent magnets, alternating currents, etc.) to extract the adsorbent with the attached pollutant. In this thesis, a new easy-to-recover adsorbent material is developed and proposed. It is constituted by magnetite and montmorillonite nanoparticles and used in the removal of cations and anions of environmental interest, employing methylene blue as the representative of a cationic and organic contaminant, and arsenic (arsenate and its protonated species in aqueous media) as the representative of anionic and inorganic contaminants. A systematic study of the properties of each solid, starting with a general characterization of the crystalline phases and their particles, followed by an investigation of the reactive properties of their surfaces, and ending with the evaluation of the adsorption capacities of the mentioned pollutants is presented. Regarding the surface reactivity, the reactive properties of the surface groups in each solid, their protonation-deprotonation behavior, the formation of surface complexes, and the development of structural and surface charges in different crystalline planes are carefully evaluated. In addition, a simple method is developed to quantify the rate of uptake of magnetic nanoparticles particle by external magnetic fields. The obtained results show that montmorillonite has a great capacity to uptake methylene blue and zero capacity to adsorb As(V). In contrast, magnetite and other magnetic nanoparticles such as nickel ferrites turned out to be very good As(V) adsorbents and very poor methylene blue adsorbents. The magnetite-montmorillonite mixtures behaved as heteroaggregates in the presence of applied electric fields and magnetic fields. However, in adsorption studies, each solid independently adsorbed the substance for which it has affinity. These conclusions are demonstrated by a very diverse set of studies by means of spectroscopy, diffractometry, microscopy, gas adsorption, adsorption isotherms, electrophoretic mobilities, etc., in various experimental conditions. Finally, the understanding of the basic processes taking place during adsorption provided a solid basis to understand how the studied systems behave and why they do it that way, both in pure systems and in magnetite-montmorillonite mixtures. Such understanding allows to predict the behavior of the system in different working conditions and to tune its properties so that it adsorbs the desired pollutant in the required quantities.
Fil: Pecini, Eliana Melisa. Universidad Nacional del Sur. Departamento de Química; Argentina
description Entre las diferentes tecnologías que existen para eliminar contaminantes del agua, la adsorción se presenta como uno de los métodos más eficientes, económicos y fáciles de desarrollar técnicamente. Sin embargo, después de llevar a cabo la adsorción, los adsorbentes son difíciles de separar de la solución utilizando técnicas de separación tradicionales. En los últimos años, los adsorbentes magnéticos han surgido como una nueva generación de materiales para la descontaminación ambiental. Este método de separación simplemente implica la aplicación de un campo magnético externo que puede ser generado por diferentes fuentes (por ejemplo, imanes permanentes, corrientes alternas, etc.) para extraer el adsorbente. En este trabajo de tesis se propone un nuevo material adsorbente de fácil recuperación formado por nanopartículas de magnetita y montmorillonita para su posterior uso en la remoción de cationes y aniones de interés ambiental, utilizando al azul de metileno como representante de un contaminante catiónico y orgánico, y al arsénico (arseniato y sus especies protonadas en medio acuoso) como representante de contaminantes aniónicos e inorgánicos. A continuación se presenta un estudio sistemático de las propiedades de cada uno de los sólidos, comenzando por una caracterización general de las fases cristalinas y sus partículas, siguiendo por las propiedades reactivas de las superficies y culminando con la evaluación de las capacidades de adsorción frente a sustancias contaminantes. En cuanto a la reactividad superficial cabe mencionar que se evalúa con detenimiento la reactividad de los grupos superficiales en cada sólido, sus propiedades de protonación-desprotonación, de complejación superficial y de desarrollo de cargas eléctricas estructurales y superficiales en diferentes planos o caras cristalinas. Además se desarrolla un método sencillo para cuantificar la velocidad de captación de partículas magnéticas por campos magnéticos. Los resultados muestran que la montmorillonita posee una gran capacidad para captar el azul de metileno y una nula capacidad para adsorber al As(V). Por el contrario, la magnetita y otras nanopartículas magnéticas como las ferritas de níquel resultaron ser muy buenas adsorbentes de As(V) y muy malas adsorbentes de azul de metileno. Las mezclas magnetita-montmorillonita se comportaron como heteroagregados frente a campos eléctricos y campos magnéticos aplicados. Sin embargo, en estudios de adsorción, cada sólido adsorbió de manera independiente las sustancia por la que tiene alta afinidad. Estas conclusiones están demostradas por un conjunto muy variado de estudios por medio de espectroscopías, difractometría, microscopías, adsorción de gases, isotermas de adsorción, movilidades electroforéticas, etc., en diversas condiciones experimentales. Por último, la comprensión de los procesos básicos de adsorción aportó una base sólida para entender cómo se comportan los sistemas estudiados y porqué lo hacen de esa manera, tanto en sistemas puros como en mezclas magnetita-montmorillonita. Tal entendimiento permite ahora predecir el comportamiento del sistema en muy variadas condiciones de trabajo y sintonizar sus propiedades para que adsorba el contaminante deseado en las cantidades requeridas.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-21
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://repositoriodigital.uns.edu.ar/handle/123456789/4497
url http://repositoriodigital.uns.edu.ar/handle/123456789/4497
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname:Universidad Nacional del Sur
reponame_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
collection Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname_str Universidad Nacional del Sur
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Sur
repository.mail.fl_str_mv mesnaola@uns.edu.ar
_version_ 1842341321469067264
score 12.623145