Visión artificial en la gestión y apoyo a la seguridad de los trabajadores

Autores
Massiris Fernández , Manlio Miguel
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Delrieux, Claudio Augusto
Vitale, Alejandro J.
Descripción
Las evaluaciones de riesgos y seguridad en el trabajo generalmente se han realizado con observaciones efectuadas in situ por personal especializado. Esta evaluación de riesgos tradicional es costosa e ineficaz, especialmente en los países en desarrollo, donde hay una necesidad de recursos humanos más capacitados. Además, el estado del arte resalta que incluso los especialistas calificados carecen de precisión intra- e inter-observador, pues a menudo se equivocan en juicios de riesgos principalmente debido a sesgos subjetivos o condiciones visuales subóptimas en el lugar de trabajo, como ser iluminación reducida, oclusiones de equipos, auto-oclusiones y ángulos de video inadecuados. En esta tesis presentamos diversas propuestas, basadas en el uso de visión artificial, para facilitar la toma de decisiones, estandarizar el proceso de evaluación y reducir el tiempo requerido para estimar el riesgo ergonómico y cuantificar el uso de equipos de protección individual. En el primer capítulo se presenta la introducción a las tecnologías de la Industria 4.0 como marco básico de requerimiento de soluciones a los problemas antes mencionados. El segundo capítulo detalla las soluciones propuestas desde la visión artificial y las redes neuronales para la estimación del riesgo ergonómico. En el tercer capítulo se presentan dos soluciones basadas en redes neuronales para la inspección y cuantificación del uso de equipos de protección personal. Finalmente, se presentan las conclusiones y el trabajo futuro. Los resultados indicaron que los métodos propuestos facilitan el proceso de evaluación de riesgos y condiciones de trabajo en aplicaciones reales en entornos desafiantes, utilizando entre otras fuentes videos obtenidos por medio de cámaras deportivas egocéntricas, teléfonos inteligentes y drones.
Risk and safety assessment at worksites is generally carried out through on-site observations performed by specialized personnel. This traditional risk assessment procedure is costly and ineffective, especially in underdeveloped countries, where specifically trained human resources are scarce and expensive. Also, the state-of-art points out that even qualified specialists lack intra- and inter-observer precision, and often err on risk judgments, mainly due to subjective biases or workplace sub-optimal visual conditions, such as reduced illumination, equipment occlusions, self-occlusions, and inadequate video angles. In this thesis we present several computer-vision- based solutions aimed to facilitate decision-making, to standardize the evaluation process, and to reduce the amount of time required for estimating ergonomic risk and quantifying the use of personal protective equipment. In the first chapter, the introduction to Industry 4.0 technologies is presented as a basic framework requiring solutions to the problemsmentioned. The second chapter details the proposed solutions based on computer vision and neural networks for the estimation of ergonomic risk. In the third chapter, two solutions based on neural networks for the inspection and quantification of the use of personal protective equipment are presented. Finally, conclusions and future work are presented. The results indicated that the methods facilitated the process of assessing risks and working conditions in real applications in challenging environments, using video recorded with sports egocentric cameras, smartphones, and drones.
Fil: Massiris Fernández , Manlio Miguel. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Materia
Ingeniería
Automatización
Ergonomía
Prevención de riesgos laborales
Redes neuronales
Visión por computador
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
Institución
Universidad Nacional del Sur
OAI Identificador
oai:repositorio.bc.uns.edu.ar:123456789/5753

id RID-UNS_10e59d44d87a8599c891e033ff6485a1
oai_identifier_str oai:repositorio.bc.uns.edu.ar:123456789/5753
network_acronym_str RID-UNS
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
spelling Visión artificial en la gestión y apoyo a la seguridad de los trabajadoresMassiris Fernández , Manlio MiguelIngenieríaAutomatizaciónErgonomíaPrevención de riesgos laboralesRedes neuronalesVisión por computadorLas evaluaciones de riesgos y seguridad en el trabajo generalmente se han realizado con observaciones efectuadas in situ por personal especializado. Esta evaluación de riesgos tradicional es costosa e ineficaz, especialmente en los países en desarrollo, donde hay una necesidad de recursos humanos más capacitados. Además, el estado del arte resalta que incluso los especialistas calificados carecen de precisión intra- e inter-observador, pues a menudo se equivocan en juicios de riesgos principalmente debido a sesgos subjetivos o condiciones visuales subóptimas en el lugar de trabajo, como ser iluminación reducida, oclusiones de equipos, auto-oclusiones y ángulos de video inadecuados. En esta tesis presentamos diversas propuestas, basadas en el uso de visión artificial, para facilitar la toma de decisiones, estandarizar el proceso de evaluación y reducir el tiempo requerido para estimar el riesgo ergonómico y cuantificar el uso de equipos de protección individual. En el primer capítulo se presenta la introducción a las tecnologías de la Industria 4.0 como marco básico de requerimiento de soluciones a los problemas antes mencionados. El segundo capítulo detalla las soluciones propuestas desde la visión artificial y las redes neuronales para la estimación del riesgo ergonómico. En el tercer capítulo se presentan dos soluciones basadas en redes neuronales para la inspección y cuantificación del uso de equipos de protección personal. Finalmente, se presentan las conclusiones y el trabajo futuro. Los resultados indicaron que los métodos propuestos facilitan el proceso de evaluación de riesgos y condiciones de trabajo en aplicaciones reales en entornos desafiantes, utilizando entre otras fuentes videos obtenidos por medio de cámaras deportivas egocéntricas, teléfonos inteligentes y drones.Risk and safety assessment at worksites is generally carried out through on-site observations performed by specialized personnel. This traditional risk assessment procedure is costly and ineffective, especially in underdeveloped countries, where specifically trained human resources are scarce and expensive. Also, the state-of-art points out that even qualified specialists lack intra- and inter-observer precision, and often err on risk judgments, mainly due to subjective biases or workplace sub-optimal visual conditions, such as reduced illumination, equipment occlusions, self-occlusions, and inadequate video angles. In this thesis we present several computer-vision- based solutions aimed to facilitate decision-making, to standardize the evaluation process, and to reduce the amount of time required for estimating ergonomic risk and quantifying the use of personal protective equipment. In the first chapter, the introduction to Industry 4.0 technologies is presented as a basic framework requiring solutions to the problemsmentioned. The second chapter details the proposed solutions based on computer vision and neural networks for the estimation of ergonomic risk. In the third chapter, two solutions based on neural networks for the inspection and quantification of the use of personal protective equipment are presented. Finally, conclusions and future work are presented. The results indicated that the methods facilitated the process of assessing risks and working conditions in real applications in challenging environments, using video recorded with sports egocentric cameras, smartphones, and drones.Fil: Massiris Fernández , Manlio Miguel. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaDelrieux, Claudio AugustoVitale, Alejandro J.2021-08-06info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://repositoriodigital.uns.edu.ar/handle/123456789/5753spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)instname:Universidad Nacional del Sur2025-09-04T09:44:44Zoai:repositorio.bc.uns.edu.ar:123456789/5753instacron:UNSInstitucionalhttp://repositoriodigital.uns.edu.ar/Universidad públicaNo correspondehttp://repositoriodigital.uns.edu.ar/oaimesnaola@uns.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:2025-09-04 09:44:44.638Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Surfalse
dc.title.none.fl_str_mv Visión artificial en la gestión y apoyo a la seguridad de los trabajadores
title Visión artificial en la gestión y apoyo a la seguridad de los trabajadores
spellingShingle Visión artificial en la gestión y apoyo a la seguridad de los trabajadores
Massiris Fernández , Manlio Miguel
Ingeniería
Automatización
Ergonomía
Prevención de riesgos laborales
Redes neuronales
Visión por computador
title_short Visión artificial en la gestión y apoyo a la seguridad de los trabajadores
title_full Visión artificial en la gestión y apoyo a la seguridad de los trabajadores
title_fullStr Visión artificial en la gestión y apoyo a la seguridad de los trabajadores
title_full_unstemmed Visión artificial en la gestión y apoyo a la seguridad de los trabajadores
title_sort Visión artificial en la gestión y apoyo a la seguridad de los trabajadores
dc.creator.none.fl_str_mv Massiris Fernández , Manlio Miguel
author Massiris Fernández , Manlio Miguel
author_facet Massiris Fernández , Manlio Miguel
author_role author
dc.contributor.none.fl_str_mv Delrieux, Claudio Augusto
Vitale, Alejandro J.
dc.subject.none.fl_str_mv Ingeniería
Automatización
Ergonomía
Prevención de riesgos laborales
Redes neuronales
Visión por computador
topic Ingeniería
Automatización
Ergonomía
Prevención de riesgos laborales
Redes neuronales
Visión por computador
dc.description.none.fl_txt_mv Las evaluaciones de riesgos y seguridad en el trabajo generalmente se han realizado con observaciones efectuadas in situ por personal especializado. Esta evaluación de riesgos tradicional es costosa e ineficaz, especialmente en los países en desarrollo, donde hay una necesidad de recursos humanos más capacitados. Además, el estado del arte resalta que incluso los especialistas calificados carecen de precisión intra- e inter-observador, pues a menudo se equivocan en juicios de riesgos principalmente debido a sesgos subjetivos o condiciones visuales subóptimas en el lugar de trabajo, como ser iluminación reducida, oclusiones de equipos, auto-oclusiones y ángulos de video inadecuados. En esta tesis presentamos diversas propuestas, basadas en el uso de visión artificial, para facilitar la toma de decisiones, estandarizar el proceso de evaluación y reducir el tiempo requerido para estimar el riesgo ergonómico y cuantificar el uso de equipos de protección individual. En el primer capítulo se presenta la introducción a las tecnologías de la Industria 4.0 como marco básico de requerimiento de soluciones a los problemas antes mencionados. El segundo capítulo detalla las soluciones propuestas desde la visión artificial y las redes neuronales para la estimación del riesgo ergonómico. En el tercer capítulo se presentan dos soluciones basadas en redes neuronales para la inspección y cuantificación del uso de equipos de protección personal. Finalmente, se presentan las conclusiones y el trabajo futuro. Los resultados indicaron que los métodos propuestos facilitan el proceso de evaluación de riesgos y condiciones de trabajo en aplicaciones reales en entornos desafiantes, utilizando entre otras fuentes videos obtenidos por medio de cámaras deportivas egocéntricas, teléfonos inteligentes y drones.
Risk and safety assessment at worksites is generally carried out through on-site observations performed by specialized personnel. This traditional risk assessment procedure is costly and ineffective, especially in underdeveloped countries, where specifically trained human resources are scarce and expensive. Also, the state-of-art points out that even qualified specialists lack intra- and inter-observer precision, and often err on risk judgments, mainly due to subjective biases or workplace sub-optimal visual conditions, such as reduced illumination, equipment occlusions, self-occlusions, and inadequate video angles. In this thesis we present several computer-vision- based solutions aimed to facilitate decision-making, to standardize the evaluation process, and to reduce the amount of time required for estimating ergonomic risk and quantifying the use of personal protective equipment. In the first chapter, the introduction to Industry 4.0 technologies is presented as a basic framework requiring solutions to the problemsmentioned. The second chapter details the proposed solutions based on computer vision and neural networks for the estimation of ergonomic risk. In the third chapter, two solutions based on neural networks for the inspection and quantification of the use of personal protective equipment are presented. Finally, conclusions and future work are presented. The results indicated that the methods facilitated the process of assessing risks and working conditions in real applications in challenging environments, using video recorded with sports egocentric cameras, smartphones, and drones.
Fil: Massiris Fernández , Manlio Miguel. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
description Las evaluaciones de riesgos y seguridad en el trabajo generalmente se han realizado con observaciones efectuadas in situ por personal especializado. Esta evaluación de riesgos tradicional es costosa e ineficaz, especialmente en los países en desarrollo, donde hay una necesidad de recursos humanos más capacitados. Además, el estado del arte resalta que incluso los especialistas calificados carecen de precisión intra- e inter-observador, pues a menudo se equivocan en juicios de riesgos principalmente debido a sesgos subjetivos o condiciones visuales subóptimas en el lugar de trabajo, como ser iluminación reducida, oclusiones de equipos, auto-oclusiones y ángulos de video inadecuados. En esta tesis presentamos diversas propuestas, basadas en el uso de visión artificial, para facilitar la toma de decisiones, estandarizar el proceso de evaluación y reducir el tiempo requerido para estimar el riesgo ergonómico y cuantificar el uso de equipos de protección individual. En el primer capítulo se presenta la introducción a las tecnologías de la Industria 4.0 como marco básico de requerimiento de soluciones a los problemas antes mencionados. El segundo capítulo detalla las soluciones propuestas desde la visión artificial y las redes neuronales para la estimación del riesgo ergonómico. En el tercer capítulo se presentan dos soluciones basadas en redes neuronales para la inspección y cuantificación del uso de equipos de protección personal. Finalmente, se presentan las conclusiones y el trabajo futuro. Los resultados indicaron que los métodos propuestos facilitan el proceso de evaluación de riesgos y condiciones de trabajo en aplicaciones reales en entornos desafiantes, utilizando entre otras fuentes videos obtenidos por medio de cámaras deportivas egocéntricas, teléfonos inteligentes y drones.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-06
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv https://repositoriodigital.uns.edu.ar/handle/123456789/5753
url https://repositoriodigital.uns.edu.ar/handle/123456789/5753
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname:Universidad Nacional del Sur
reponame_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
collection Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname_str Universidad Nacional del Sur
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Sur
repository.mail.fl_str_mv mesnaola@uns.edu.ar
_version_ 1842341316455825408
score 12.623145