Redes neuronales artificiales y método Monte Carlo aplicado a la radioterapia

Autores
Torres Díaz, Jorge
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Bonzi, Edgardo
Vargas, Laura
Juri, Gustavo
Descripción
Tesis (DCI)--FCEFN-UNC, 2021
Fil: Torres Díaz, Jorge. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
La radioterapia (RT) es una modalidad de tratamiento que emplea radiaciones ionizantes como rayos X, rayos γ, electrones, protones, etc., con fines curativos o paliativos. Con el objetivo de proteger los tejidos y/u órganos sanos alrededor del volumen a tratar, un paso previo a la entrega del tratamiento, es la optimización de la distribución de la dosis absorbida en el paciente. En la práctica clínica habitual, esta tarea se realiza mediante sistemas de planificación del tratamiento (TPS). Actualmente, la mayoría de estos sistemas se basan en algoritmos analíticos que pueden dar lugar a inexactitudes importantes, siendo el perfeccionamiento de estos procedimientos de cálculo un campo de constante investigación, y en el cual se trabajó en esta tesis. En una primera instancia, se trabajó en el área de la Braquiterapia (BT) intersticial. El cálculo de dosis en BT se basa en el formalismo del Task Group 43, el cual supone la dosis de cada fuente en un medio infinito y homogéneo de agua. Desarrollamos una metodología en la cual se toma en cuenta la dosis absorbida entre fuentes. La metodología consiste en simular por Monte Carlo (MC) diferentes arreglos de distintas configuraciones de fuentes, de tal forma que podamos reproducir la distribución de los tratamientos. Nuestro método obtuvo excelentes resultados al compararlo con una simulación completa por MC de los mismos casos pruebas. Además, demostró ser un cálculo ultrarrápido, lo cual es una forma efectiva de emplear simulaciones MC en la clínica. En otra instancia, se trabajó en el área de RT externa (EBRT). El espectro de energía es la mejor función descriptiva para determinar la calidad del haz de fotones de un acelerador lineal de electrones clínico (LINAC). El espectro es un parámetro de suma importancia para el cálculo de dosis en los TPS. Los espectros energéticos de los LINAC son difíciles de obtener, dado que son complejos de modelar en forma teórica, incluso conociendo los detalles de diseño del LINAC, y aún de mayor complejidad es su medición. La reconstrucción de los espectros de fotones a partir de las curvas de porciento de dosis en profundidad (PDD) medidas en un maniquí de agua es una opción prometedora. En este sentido, el problema de la reconstrucción es una función de transporte de radiación inversa que está mal condicionada y su solución puede volverse inestable debido a pequeñas perturbaciones en los datos de entrada. En esta tesis se desarrolló para la reconstrucción espectral un software mediante redes neuronales, capaz de predecir el espectro de fotones del LINAC a través de la curva de dosis en profundidad. Para su validación empleamos un modelo de cada una de las tres marcas de LINAC con mayor presencia en el mercado, obteniendo excelentes resultados en la reconstrucción a partir de los PDD medidos.
Fil: Torres Díaz, Jorge. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
Materia
Inteligencia artificial
Redes Neuronales artificiales
Monte Carlo
Radioterapia
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/24393

id RDUUNC_d81fa7b22eb74c7a5997d55e84b3d537
oai_identifier_str oai:rdu.unc.edu.ar:11086/24393
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Redes neuronales artificiales y método Monte Carlo aplicado a la radioterapiaTorres Díaz, JorgeInteligencia artificialRedes Neuronales artificialesMonte CarloRadioterapiaTesis (DCI)--FCEFN-UNC, 2021Fil: Torres Díaz, Jorge. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.La radioterapia (RT) es una modalidad de tratamiento que emplea radiaciones ionizantes como rayos X, rayos γ, electrones, protones, etc., con fines curativos o paliativos. Con el objetivo de proteger los tejidos y/u órganos sanos alrededor del volumen a tratar, un paso previo a la entrega del tratamiento, es la optimización de la distribución de la dosis absorbida en el paciente. En la práctica clínica habitual, esta tarea se realiza mediante sistemas de planificación del tratamiento (TPS). Actualmente, la mayoría de estos sistemas se basan en algoritmos analíticos que pueden dar lugar a inexactitudes importantes, siendo el perfeccionamiento de estos procedimientos de cálculo un campo de constante investigación, y en el cual se trabajó en esta tesis. En una primera instancia, se trabajó en el área de la Braquiterapia (BT) intersticial. El cálculo de dosis en BT se basa en el formalismo del Task Group 43, el cual supone la dosis de cada fuente en un medio infinito y homogéneo de agua. Desarrollamos una metodología en la cual se toma en cuenta la dosis absorbida entre fuentes. La metodología consiste en simular por Monte Carlo (MC) diferentes arreglos de distintas configuraciones de fuentes, de tal forma que podamos reproducir la distribución de los tratamientos. Nuestro método obtuvo excelentes resultados al compararlo con una simulación completa por MC de los mismos casos pruebas. Además, demostró ser un cálculo ultrarrápido, lo cual es una forma efectiva de emplear simulaciones MC en la clínica. En otra instancia, se trabajó en el área de RT externa (EBRT). El espectro de energía es la mejor función descriptiva para determinar la calidad del haz de fotones de un acelerador lineal de electrones clínico (LINAC). El espectro es un parámetro de suma importancia para el cálculo de dosis en los TPS. Los espectros energéticos de los LINAC son difíciles de obtener, dado que son complejos de modelar en forma teórica, incluso conociendo los detalles de diseño del LINAC, y aún de mayor complejidad es su medición. La reconstrucción de los espectros de fotones a partir de las curvas de porciento de dosis en profundidad (PDD) medidas en un maniquí de agua es una opción prometedora. En este sentido, el problema de la reconstrucción es una función de transporte de radiación inversa que está mal condicionada y su solución puede volverse inestable debido a pequeñas perturbaciones en los datos de entrada. En esta tesis se desarrolló para la reconstrucción espectral un software mediante redes neuronales, capaz de predecir el espectro de fotones del LINAC a través de la curva de dosis en profundidad. Para su validación empleamos un modelo de cada una de las tres marcas de LINAC con mayor presencia en el mercado, obteniendo excelentes resultados en la reconstrucción a partir de los PDD medidos.Fil: Torres Díaz, Jorge. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Bonzi, EdgardoVargas, LauraJuri, Gustavo2021info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://hdl.handle.net/11086/24393spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:44:01Zoai:rdu.unc.edu.ar:11086/24393Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:44:01.677Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Redes neuronales artificiales y método Monte Carlo aplicado a la radioterapia
title Redes neuronales artificiales y método Monte Carlo aplicado a la radioterapia
spellingShingle Redes neuronales artificiales y método Monte Carlo aplicado a la radioterapia
Torres Díaz, Jorge
Inteligencia artificial
Redes Neuronales artificiales
Monte Carlo
Radioterapia
title_short Redes neuronales artificiales y método Monte Carlo aplicado a la radioterapia
title_full Redes neuronales artificiales y método Monte Carlo aplicado a la radioterapia
title_fullStr Redes neuronales artificiales y método Monte Carlo aplicado a la radioterapia
title_full_unstemmed Redes neuronales artificiales y método Monte Carlo aplicado a la radioterapia
title_sort Redes neuronales artificiales y método Monte Carlo aplicado a la radioterapia
dc.creator.none.fl_str_mv Torres Díaz, Jorge
author Torres Díaz, Jorge
author_facet Torres Díaz, Jorge
author_role author
dc.contributor.none.fl_str_mv Bonzi, Edgardo
Vargas, Laura
Juri, Gustavo
dc.subject.none.fl_str_mv Inteligencia artificial
Redes Neuronales artificiales
Monte Carlo
Radioterapia
topic Inteligencia artificial
Redes Neuronales artificiales
Monte Carlo
Radioterapia
dc.description.none.fl_txt_mv Tesis (DCI)--FCEFN-UNC, 2021
Fil: Torres Díaz, Jorge. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
La radioterapia (RT) es una modalidad de tratamiento que emplea radiaciones ionizantes como rayos X, rayos γ, electrones, protones, etc., con fines curativos o paliativos. Con el objetivo de proteger los tejidos y/u órganos sanos alrededor del volumen a tratar, un paso previo a la entrega del tratamiento, es la optimización de la distribución de la dosis absorbida en el paciente. En la práctica clínica habitual, esta tarea se realiza mediante sistemas de planificación del tratamiento (TPS). Actualmente, la mayoría de estos sistemas se basan en algoritmos analíticos que pueden dar lugar a inexactitudes importantes, siendo el perfeccionamiento de estos procedimientos de cálculo un campo de constante investigación, y en el cual se trabajó en esta tesis. En una primera instancia, se trabajó en el área de la Braquiterapia (BT) intersticial. El cálculo de dosis en BT se basa en el formalismo del Task Group 43, el cual supone la dosis de cada fuente en un medio infinito y homogéneo de agua. Desarrollamos una metodología en la cual se toma en cuenta la dosis absorbida entre fuentes. La metodología consiste en simular por Monte Carlo (MC) diferentes arreglos de distintas configuraciones de fuentes, de tal forma que podamos reproducir la distribución de los tratamientos. Nuestro método obtuvo excelentes resultados al compararlo con una simulación completa por MC de los mismos casos pruebas. Además, demostró ser un cálculo ultrarrápido, lo cual es una forma efectiva de emplear simulaciones MC en la clínica. En otra instancia, se trabajó en el área de RT externa (EBRT). El espectro de energía es la mejor función descriptiva para determinar la calidad del haz de fotones de un acelerador lineal de electrones clínico (LINAC). El espectro es un parámetro de suma importancia para el cálculo de dosis en los TPS. Los espectros energéticos de los LINAC son difíciles de obtener, dado que son complejos de modelar en forma teórica, incluso conociendo los detalles de diseño del LINAC, y aún de mayor complejidad es su medición. La reconstrucción de los espectros de fotones a partir de las curvas de porciento de dosis en profundidad (PDD) medidas en un maniquí de agua es una opción prometedora. En este sentido, el problema de la reconstrucción es una función de transporte de radiación inversa que está mal condicionada y su solución puede volverse inestable debido a pequeñas perturbaciones en los datos de entrada. En esta tesis se desarrolló para la reconstrucción espectral un software mediante redes neuronales, capaz de predecir el espectro de fotones del LINAC a través de la curva de dosis en profundidad. Para su validación empleamos un modelo de cada una de las tres marcas de LINAC con mayor presencia en el mercado, obteniendo excelentes resultados en la reconstrucción a partir de los PDD medidos.
Fil: Torres Díaz, Jorge. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
description Tesis (DCI)--FCEFN-UNC, 2021
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11086/24393
url http://hdl.handle.net/11086/24393
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1844618971938029568
score 13.070432