Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability

Autores
Kembro, Jackeline Melissa; Cortassa, Sonia; Lloyd, David; Sollott, Steven; Aon, Miguel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Kembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.
Cortassa, Sonia. National Institutes of Health. NIH · NIA Intramural Research Program; Estados Unidos.
Lloyd, David. Cardiff University. School of Biosciences 1; Inglaterra.
Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.
Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.
Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the “edge” between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the “edge” mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.
publishedVersion
Kembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.
Cortassa, Sonia. National Institutes of Health. NIH · NIA Intramural Research Program; Estados Unidos.
Lloyd, David. Cardiff University. School of Biosciences 1; Inglaterra.
Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.
Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.
Materia
Mitochondria
Biophysics
Biologia Molecular
Chaotic Dynamics
Redox perturbations
Complex Oscillatory Behavior
Lyapunov Exponent
Strange Attractors
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/17032

id RDUUNC_ce58a584100fedf98eb0b92d2a5cf788
oai_identifier_str oai:rdu.unc.edu.ar:11086/17032
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stabilityKembro, Jackeline MelissaCortassa, SoniaLloyd, DavidSollott, StevenAon, MiguelMitochondriaBiophysicsBiologia MolecularChaotic DynamicsRedox perturbationsComplex Oscillatory BehaviorLyapunov ExponentStrange AttractorsKembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Cortassa, Sonia. National Institutes of Health. NIH · NIA Intramural Research Program; Estados Unidos.Lloyd, David. Cardiff University. School of Biosciences 1; Inglaterra.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the “edge” between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the “edge” mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.publishedVersionKembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Cortassa, Sonia. National Institutes of Health. NIH · NIA Intramural Research Program; Estados Unidos.Lloyd, David. Cardiff University. School of Biosciences 1; Inglaterra.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.2018-10-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfKembro, J.M., Cortassa, S., Lloyd, D. et al. Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability. Sci Rep 8, 15422 (2018). https://doi.org/10.1038/s41598-018-33582-whttps://doi.org/10.1038/s41598-018-33582-whttp://hdl.handle.net/11086/17032enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-04T12:31:33Zoai:rdu.unc.edu.ar:11086/17032Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-04 12:31:33.687Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
title Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
spellingShingle Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
Kembro, Jackeline Melissa
Mitochondria
Biophysics
Biologia Molecular
Chaotic Dynamics
Redox perturbations
Complex Oscillatory Behavior
Lyapunov Exponent
Strange Attractors
title_short Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
title_full Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
title_fullStr Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
title_full_unstemmed Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
title_sort Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
dc.creator.none.fl_str_mv Kembro, Jackeline Melissa
Cortassa, Sonia
Lloyd, David
Sollott, Steven
Aon, Miguel
author Kembro, Jackeline Melissa
author_facet Kembro, Jackeline Melissa
Cortassa, Sonia
Lloyd, David
Sollott, Steven
Aon, Miguel
author_role author
author2 Cortassa, Sonia
Lloyd, David
Sollott, Steven
Aon, Miguel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Mitochondria
Biophysics
Biologia Molecular
Chaotic Dynamics
Redox perturbations
Complex Oscillatory Behavior
Lyapunov Exponent
Strange Attractors
topic Mitochondria
Biophysics
Biologia Molecular
Chaotic Dynamics
Redox perturbations
Complex Oscillatory Behavior
Lyapunov Exponent
Strange Attractors
dc.description.none.fl_txt_mv Kembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.
Cortassa, Sonia. National Institutes of Health. NIH · NIA Intramural Research Program; Estados Unidos.
Lloyd, David. Cardiff University. School of Biosciences 1; Inglaterra.
Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.
Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.
Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the “edge” between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the “edge” mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.
publishedVersion
Kembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.
Cortassa, Sonia. National Institutes of Health. NIH · NIA Intramural Research Program; Estados Unidos.
Lloyd, David. Cardiff University. School of Biosciences 1; Inglaterra.
Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.
Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.
description Kembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Kembro, J.M., Cortassa, S., Lloyd, D. et al. Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability. Sci Rep 8, 15422 (2018). https://doi.org/10.1038/s41598-018-33582-w
https://doi.org/10.1038/s41598-018-33582-w
http://hdl.handle.net/11086/17032
identifier_str_mv Kembro, J.M., Cortassa, S., Lloyd, D. et al. Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability. Sci Rep 8, 15422 (2018). https://doi.org/10.1038/s41598-018-33582-w
url https://doi.org/10.1038/s41598-018-33582-w
http://hdl.handle.net/11086/17032
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1842349618062426112
score 13.13397