Mass appraisal as affordable public policy: Open data and machine learning for mapping urban land values

Autores
Carranza, Juan Pablo; Piumetto, Mario; Lucca, Carlos; Da Silva, Everton
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Carranza, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.
Fil: Piumetto, Mario. Universidad Nacional de Cordoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Estudios Territoriales; Argentina.
Fil: Lucca, Carlos. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.
Fil: Da Silva, Everton. Universidade Federal de Santa Catarina. Departamento de Geociencias; Brazil.
Updated cadastral land values are a matter of critical importance for local governments: higher revenue ofproperty taxes, more equitable treatment to taxpayers, a fundamental input in the design of public policiesrelated to access to land and housing for the most vulnerable and a key feature in land value capture strategies tofinance public infrastructure, to name just a few public policies that require correct valuations of land. However,in Latin America, outdated cadastral values are common to most cities. The reasons for this can be found in thecomplexity of the mass appraisal process, lack of institutional and fiscal capacity to undertake it and bureaucraticresistance to its implementation.The objective of this paper is to present a mass appraisal methodology that uses only free and open data toachieve robust urban land valuations. Information from the OpenStreetMap Project is used to generate severalland variables. In addition, the Global Human Settlement Layer of the European Commission is used to determinethe level of consolidation of urban sprawl. Land value data were obtained from the Mapa de Valores de Am´ericaLatina, a collaborative initiative that systemizes more than 68,000 data from more than 900 cities.This information is used to train three tree-based machine learning models: Random Forest, Quantile RandomForest and Gradient Boosting Model. The results support the viability of the proposed strategy, simplifying themass appraisal process in terms of costs, time and complexity of the information used.
https://www.sciencedirect.com/journal/land-use-policy/vol/119/suppl/C
info:eu-repo/semantics/publishedVersion
Fil: Carranza, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.
Fil: Piumetto, Mario. Universidad Nacional de Cordoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Estudios Territoriales; Argentina.
Fil: Lucca, Carlos. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.
Fil: Da Silva, Everton. Universidade Federal de Santa Catarina. Departamento de Geociencias; Brazil.
Estudios Urbanos (Planeamiento y Desarrollo)
Materia
Machine learning
Open data
Mass appraisal
Urban land value
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/554563

id RDUUNC_c0132a5e3484437722c50607ae370b04
oai_identifier_str oai:rdu.unc.edu.ar:11086/554563
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Mass appraisal as affordable public policy: Open data and machine learning for mapping urban land valuesCarranza, Juan PabloPiumetto, MarioLucca, CarlosDa Silva, EvertonMachine learningOpen dataMass appraisalUrban land valueFil: Carranza, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.Fil: Piumetto, Mario. Universidad Nacional de Cordoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Estudios Territoriales; Argentina.Fil: Lucca, Carlos. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.Fil: Da Silva, Everton. Universidade Federal de Santa Catarina. Departamento de Geociencias; Brazil.Updated cadastral land values are a matter of critical importance for local governments: higher revenue ofproperty taxes, more equitable treatment to taxpayers, a fundamental input in the design of public policiesrelated to access to land and housing for the most vulnerable and a key feature in land value capture strategies tofinance public infrastructure, to name just a few public policies that require correct valuations of land. However,in Latin America, outdated cadastral values are common to most cities. The reasons for this can be found in thecomplexity of the mass appraisal process, lack of institutional and fiscal capacity to undertake it and bureaucraticresistance to its implementation.The objective of this paper is to present a mass appraisal methodology that uses only free and open data toachieve robust urban land valuations. Information from the OpenStreetMap Project is used to generate severalland variables. In addition, the Global Human Settlement Layer of the European Commission is used to determinethe level of consolidation of urban sprawl. Land value data were obtained from the Mapa de Valores de Am´ericaLatina, a collaborative initiative that systemizes more than 68,000 data from more than 900 cities.This information is used to train three tree-based machine learning models: Random Forest, Quantile RandomForest and Gradient Boosting Model. The results support the viability of the proposed strategy, simplifying themass appraisal process in terms of costs, time and complexity of the information used.https://www.sciencedirect.com/journal/land-use-policy/vol/119/suppl/Cinfo:eu-repo/semantics/publishedVersionFil: Carranza, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.Fil: Piumetto, Mario. Universidad Nacional de Cordoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Estudios Territoriales; Argentina.Fil: Lucca, Carlos. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.Fil: Da Silva, Everton. Universidade Federal de Santa Catarina. Departamento de Geociencias; Brazil.Estudios Urbanos (Planeamiento y Desarrollo)https://orcid.org/0000-0003-4793-1323https://orcid.org/0000-0002-3679-9761https://orcid.org/0000-0001-9724-83842022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/11086/5545631873-5754https://www.sciencedirect.com/journal/land-use-policy/vol/119/suppl/Chttps://doi.org/10.1016/j.landusepol.2022.106211enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-10-23T11:19:16Zoai:rdu.unc.edu.ar:11086/554563Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-10-23 11:19:16.693Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Mass appraisal as affordable public policy: Open data and machine learning for mapping urban land values
title Mass appraisal as affordable public policy: Open data and machine learning for mapping urban land values
spellingShingle Mass appraisal as affordable public policy: Open data and machine learning for mapping urban land values
Carranza, Juan Pablo
Machine learning
Open data
Mass appraisal
Urban land value
title_short Mass appraisal as affordable public policy: Open data and machine learning for mapping urban land values
title_full Mass appraisal as affordable public policy: Open data and machine learning for mapping urban land values
title_fullStr Mass appraisal as affordable public policy: Open data and machine learning for mapping urban land values
title_full_unstemmed Mass appraisal as affordable public policy: Open data and machine learning for mapping urban land values
title_sort Mass appraisal as affordable public policy: Open data and machine learning for mapping urban land values
dc.creator.none.fl_str_mv Carranza, Juan Pablo
Piumetto, Mario
Lucca, Carlos
Da Silva, Everton
author Carranza, Juan Pablo
author_facet Carranza, Juan Pablo
Piumetto, Mario
Lucca, Carlos
Da Silva, Everton
author_role author
author2 Piumetto, Mario
Lucca, Carlos
Da Silva, Everton
author2_role author
author
author
dc.contributor.none.fl_str_mv https://orcid.org/0000-0003-4793-1323
https://orcid.org/0000-0002-3679-9761
https://orcid.org/0000-0001-9724-8384
dc.subject.none.fl_str_mv Machine learning
Open data
Mass appraisal
Urban land value
topic Machine learning
Open data
Mass appraisal
Urban land value
dc.description.none.fl_txt_mv Fil: Carranza, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.
Fil: Piumetto, Mario. Universidad Nacional de Cordoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Estudios Territoriales; Argentina.
Fil: Lucca, Carlos. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.
Fil: Da Silva, Everton. Universidade Federal de Santa Catarina. Departamento de Geociencias; Brazil.
Updated cadastral land values are a matter of critical importance for local governments: higher revenue ofproperty taxes, more equitable treatment to taxpayers, a fundamental input in the design of public policiesrelated to access to land and housing for the most vulnerable and a key feature in land value capture strategies tofinance public infrastructure, to name just a few public policies that require correct valuations of land. However,in Latin America, outdated cadastral values are common to most cities. The reasons for this can be found in thecomplexity of the mass appraisal process, lack of institutional and fiscal capacity to undertake it and bureaucraticresistance to its implementation.The objective of this paper is to present a mass appraisal methodology that uses only free and open data toachieve robust urban land valuations. Information from the OpenStreetMap Project is used to generate severalland variables. In addition, the Global Human Settlement Layer of the European Commission is used to determinethe level of consolidation of urban sprawl. Land value data were obtained from the Mapa de Valores de Am´ericaLatina, a collaborative initiative that systemizes more than 68,000 data from more than 900 cities.This information is used to train three tree-based machine learning models: Random Forest, Quantile RandomForest and Gradient Boosting Model. The results support the viability of the proposed strategy, simplifying themass appraisal process in terms of costs, time and complexity of the information used.
https://www.sciencedirect.com/journal/land-use-policy/vol/119/suppl/C
info:eu-repo/semantics/publishedVersion
Fil: Carranza, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.
Fil: Piumetto, Mario. Universidad Nacional de Cordoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Estudios Territoriales; Argentina.
Fil: Lucca, Carlos. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.
Fil: Da Silva, Everton. Universidade Federal de Santa Catarina. Departamento de Geociencias; Brazil.
Estudios Urbanos (Planeamiento y Desarrollo)
description Fil: Carranza, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Instituto de Investigación y Formación en Administración Pública; Argentina.
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
status_str publishedVersion
format article
dc.identifier.none.fl_str_mv http://hdl.handle.net/11086/554563
1873-5754
https://www.sciencedirect.com/journal/land-use-policy/vol/119/suppl/C
https://doi.org/10.1016/j.landusepol.2022.106211
url http://hdl.handle.net/11086/554563
https://www.sciencedirect.com/journal/land-use-policy/vol/119/suppl/C
https://doi.org/10.1016/j.landusepol.2022.106211
identifier_str_mv 1873-5754
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1846785324447956992
score 12.982451