Cálculo de Wirtinger y estadísitca de vectores aleatorios complejos
- Autores
- Díaz, María Julieta
- Año de publicación
- 2017
- Idioma
- español castellano
- Tipo de recurso
- tesis de grado
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Bustos, Oscar Humberto
- Descripción
- En muchas aplicaciones prácticas trabajamos con funciones f que no son diferenciables en el sentido complejo. En estos casos, nuestra única opción es trabajar con las derivadas reales de u y v (donde u y v son las partes real e imaginaria de f ). Sin embargo, esto podría hacer que los cálculos de los gradientes sean engorrosos y tedioso. Para hacer frente a este problema, desarrollamos una formulación alternativa que, a pesar de que se basa en las derivadas reales, se asemeja mucho a la noción de la derivada compleja. De hecho, si f es diferenciable en el sentido complejo, las derivadas desarrolladas van a coincidir con las complejas. En el presente trabajo estudiamos con detalle esta idea. En el capítulo 1 consideramos los preliminares del campo complejo y nos ocupamos del Cálculo de Wirtinger para funciones de una variable compleja. En el capítulo 2 introducimos el concepto de variable aleatoria compleja y mostramos cómo los resultados del capítulo anterior conducen a la derivación y caracterización de las cantidades de una variable aleatoria compleja tales como momentos, cumulantes y circularidad. Finalmente en el capítulo 3 estudiamos los vectores aleatorios complejos y caracterizamos sus propiedades estadísticas de segundo orden. Además presentamos dos distribuciones importantes: la distribución Gaussiana compleja y su generalización, la distribución elíptica compleja.
- Materia
-
Signal theory
Cálculo de Wirtinger
Distribución elíptica compleja - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/5800
Ver los metadatos del registro completo
id |
RDUUNC_bc8172e0a6e86222667852c06646dd66 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/5800 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Cálculo de Wirtinger y estadísitca de vectores aleatorios complejosDíaz, María JulietaSignal theoryCálculo de WirtingerDistribución elíptica complejaEn muchas aplicaciones prácticas trabajamos con funciones f que no son diferenciables en el sentido complejo. En estos casos, nuestra única opción es trabajar con las derivadas reales de u y v (donde u y v son las partes real e imaginaria de f ). Sin embargo, esto podría hacer que los cálculos de los gradientes sean engorrosos y tedioso. Para hacer frente a este problema, desarrollamos una formulación alternativa que, a pesar de que se basa en las derivadas reales, se asemeja mucho a la noción de la derivada compleja. De hecho, si f es diferenciable en el sentido complejo, las derivadas desarrolladas van a coincidir con las complejas. En el presente trabajo estudiamos con detalle esta idea. En el capítulo 1 consideramos los preliminares del campo complejo y nos ocupamos del Cálculo de Wirtinger para funciones de una variable compleja. En el capítulo 2 introducimos el concepto de variable aleatoria compleja y mostramos cómo los resultados del capítulo anterior conducen a la derivación y caracterización de las cantidades de una variable aleatoria compleja tales como momentos, cumulantes y circularidad. Finalmente en el capítulo 3 estudiamos los vectores aleatorios complejos y caracterizamos sus propiedades estadísticas de segundo orden. Además presentamos dos distribuciones importantes: la distribución Gaussiana compleja y su generalización, la distribución elíptica compleja.Bustos, Oscar Humberto2017info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://hdl.handle.net/11086/5800spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:42:02Zoai:rdu.unc.edu.ar:11086/5800Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:42:02.767Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Cálculo de Wirtinger y estadísitca de vectores aleatorios complejos |
title |
Cálculo de Wirtinger y estadísitca de vectores aleatorios complejos |
spellingShingle |
Cálculo de Wirtinger y estadísitca de vectores aleatorios complejos Díaz, María Julieta Signal theory Cálculo de Wirtinger Distribución elíptica compleja |
title_short |
Cálculo de Wirtinger y estadísitca de vectores aleatorios complejos |
title_full |
Cálculo de Wirtinger y estadísitca de vectores aleatorios complejos |
title_fullStr |
Cálculo de Wirtinger y estadísitca de vectores aleatorios complejos |
title_full_unstemmed |
Cálculo de Wirtinger y estadísitca de vectores aleatorios complejos |
title_sort |
Cálculo de Wirtinger y estadísitca de vectores aleatorios complejos |
dc.creator.none.fl_str_mv |
Díaz, María Julieta |
author |
Díaz, María Julieta |
author_facet |
Díaz, María Julieta |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bustos, Oscar Humberto |
dc.subject.none.fl_str_mv |
Signal theory Cálculo de Wirtinger Distribución elíptica compleja |
topic |
Signal theory Cálculo de Wirtinger Distribución elíptica compleja |
dc.description.none.fl_txt_mv |
En muchas aplicaciones prácticas trabajamos con funciones f que no son diferenciables en el sentido complejo. En estos casos, nuestra única opción es trabajar con las derivadas reales de u y v (donde u y v son las partes real e imaginaria de f ). Sin embargo, esto podría hacer que los cálculos de los gradientes sean engorrosos y tedioso. Para hacer frente a este problema, desarrollamos una formulación alternativa que, a pesar de que se basa en las derivadas reales, se asemeja mucho a la noción de la derivada compleja. De hecho, si f es diferenciable en el sentido complejo, las derivadas desarrolladas van a coincidir con las complejas. En el presente trabajo estudiamos con detalle esta idea. En el capítulo 1 consideramos los preliminares del campo complejo y nos ocupamos del Cálculo de Wirtinger para funciones de una variable compleja. En el capítulo 2 introducimos el concepto de variable aleatoria compleja y mostramos cómo los resultados del capítulo anterior conducen a la derivación y caracterización de las cantidades de una variable aleatoria compleja tales como momentos, cumulantes y circularidad. Finalmente en el capítulo 3 estudiamos los vectores aleatorios complejos y caracterizamos sus propiedades estadísticas de segundo orden. Además presentamos dos distribuciones importantes: la distribución Gaussiana compleja y su generalización, la distribución elíptica compleja. |
description |
En muchas aplicaciones prácticas trabajamos con funciones f que no son diferenciables en el sentido complejo. En estos casos, nuestra única opción es trabajar con las derivadas reales de u y v (donde u y v son las partes real e imaginaria de f ). Sin embargo, esto podría hacer que los cálculos de los gradientes sean engorrosos y tedioso. Para hacer frente a este problema, desarrollamos una formulación alternativa que, a pesar de que se basa en las derivadas reales, se asemeja mucho a la noción de la derivada compleja. De hecho, si f es diferenciable en el sentido complejo, las derivadas desarrolladas van a coincidir con las complejas. En el presente trabajo estudiamos con detalle esta idea. En el capítulo 1 consideramos los preliminares del campo complejo y nos ocupamos del Cálculo de Wirtinger para funciones de una variable compleja. En el capítulo 2 introducimos el concepto de variable aleatoria compleja y mostramos cómo los resultados del capítulo anterior conducen a la derivación y caracterización de las cantidades de una variable aleatoria compleja tales como momentos, cumulantes y circularidad. Finalmente en el capítulo 3 estudiamos los vectores aleatorios complejos y caracterizamos sus propiedades estadísticas de segundo orden. Además presentamos dos distribuciones importantes: la distribución Gaussiana compleja y su generalización, la distribución elíptica compleja. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11086/5800 |
url |
http://hdl.handle.net/11086/5800 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618917374328832 |
score |
13.070432 |