Reconocimiento facial en imágenes
- Autores
- Pastore, Pablo Andrés
- Año de publicación
- 2018
- Idioma
- español castellano
- Tipo de recurso
- tesis de grado
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Sánchez, Jorge Adrián, dir.
- Descripción
- Tesis (Lic. en Ciencias de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2018.
En este trabajo se abordará el problema de reconocimiento facial en imágenes utilizando redes neuronales convolucionales. El éxito actual en los resultados obtenidos por este tipo de modelos yace principalmente en la posibilidad de contar con grandes volúmenes de datos anotados para su entrenamiento. Con respecto al reconocimiento facial, la disponibilidad de bases de datos públicas para este tipo de problemas es escasa, restringiendo los avances en el área de los últimos años a grandes empresas como Facebook, Google, Baidu, etc. En nuestros experimentos, tomaremos como punto de partida una red neuronal convolucional entrenada sobre una base de datos de rostros varios órdenes de magnitud menor a aquellas utilizadas comúnmente por el estado del arte. Usaremos vectores de características obtenidos con este modelo para entrenar un mapeo bilineal mediante una función de costo conocida como Triplet Loss. El objetivo del modelo final es obtener resultados cercanos al estado del arte, pero, utilizando un conjunto de datos de entrenamiento reducido.
In this work we address the problem of facial recognition on images using convolutional neural networks. Successful results obtained by these models relies mainly on the availability of large amounts of manually annotated data for training. For the task of facial recognition, the lack of large-scale publicly available datasets has restricted most advances in the field to big companies like Facebook, Google, Baidu, etc. In our experiments, we start from a simple convolutional neural network trained on a standard facial recognition dataset several orders of magnitude smaller than those used by the state-of-the-art. We use features extracted from this model to train a bilinear map using a cost function known in the literature as Triplet Loss. The goal of such model is to get results as close as possible to those obtained by state-of-the-art models but using a much smaller training set. - Materia
-
Metodologías de computación
Redes neuronales
Computing methodologies
Neural networks
Aprendizaje automático
Convolucionales
Reconocimiento facial - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/11694
Ver los metadatos del registro completo
id |
RDUUNC_b73aa79ca69974315b5a8f854bcb1b8d |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/11694 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Reconocimiento facial en imágenesPastore, Pablo AndrésMetodologías de computaciónRedes neuronalesComputing methodologiesNeural networksAprendizaje automáticoConvolucionalesReconocimiento facialTesis (Lic. en Ciencias de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2018.En este trabajo se abordará el problema de reconocimiento facial en imágenes utilizando redes neuronales convolucionales. El éxito actual en los resultados obtenidos por este tipo de modelos yace principalmente en la posibilidad de contar con grandes volúmenes de datos anotados para su entrenamiento. Con respecto al reconocimiento facial, la disponibilidad de bases de datos públicas para este tipo de problemas es escasa, restringiendo los avances en el área de los últimos años a grandes empresas como Facebook, Google, Baidu, etc. En nuestros experimentos, tomaremos como punto de partida una red neuronal convolucional entrenada sobre una base de datos de rostros varios órdenes de magnitud menor a aquellas utilizadas comúnmente por el estado del arte. Usaremos vectores de características obtenidos con este modelo para entrenar un mapeo bilineal mediante una función de costo conocida como Triplet Loss. El objetivo del modelo final es obtener resultados cercanos al estado del arte, pero, utilizando un conjunto de datos de entrenamiento reducido.In this work we address the problem of facial recognition on images using convolutional neural networks. Successful results obtained by these models relies mainly on the availability of large amounts of manually annotated data for training. For the task of facial recognition, the lack of large-scale publicly available datasets has restricted most advances in the field to big companies like Facebook, Google, Baidu, etc. In our experiments, we start from a simple convolutional neural network trained on a standard facial recognition dataset several orders of magnitude smaller than those used by the state-of-the-art. We use features extracted from this model to train a bilinear map using a cost function known in the literature as Triplet Loss. The goal of such model is to get results as close as possible to those obtained by state-of-the-art models but using a much smaller training set.Sánchez, Jorge Adrián, dir.2018-05info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://hdl.handle.net/11086/11694spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-04T12:33:18Zoai:rdu.unc.edu.ar:11086/11694Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-04 12:33:18.414Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Reconocimiento facial en imágenes |
title |
Reconocimiento facial en imágenes |
spellingShingle |
Reconocimiento facial en imágenes Pastore, Pablo Andrés Metodologías de computación Redes neuronales Computing methodologies Neural networks Aprendizaje automático Convolucionales Reconocimiento facial |
title_short |
Reconocimiento facial en imágenes |
title_full |
Reconocimiento facial en imágenes |
title_fullStr |
Reconocimiento facial en imágenes |
title_full_unstemmed |
Reconocimiento facial en imágenes |
title_sort |
Reconocimiento facial en imágenes |
dc.creator.none.fl_str_mv |
Pastore, Pablo Andrés |
author |
Pastore, Pablo Andrés |
author_facet |
Pastore, Pablo Andrés |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sánchez, Jorge Adrián, dir. |
dc.subject.none.fl_str_mv |
Metodologías de computación Redes neuronales Computing methodologies Neural networks Aprendizaje automático Convolucionales Reconocimiento facial |
topic |
Metodologías de computación Redes neuronales Computing methodologies Neural networks Aprendizaje automático Convolucionales Reconocimiento facial |
dc.description.none.fl_txt_mv |
Tesis (Lic. en Ciencias de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2018. En este trabajo se abordará el problema de reconocimiento facial en imágenes utilizando redes neuronales convolucionales. El éxito actual en los resultados obtenidos por este tipo de modelos yace principalmente en la posibilidad de contar con grandes volúmenes de datos anotados para su entrenamiento. Con respecto al reconocimiento facial, la disponibilidad de bases de datos públicas para este tipo de problemas es escasa, restringiendo los avances en el área de los últimos años a grandes empresas como Facebook, Google, Baidu, etc. En nuestros experimentos, tomaremos como punto de partida una red neuronal convolucional entrenada sobre una base de datos de rostros varios órdenes de magnitud menor a aquellas utilizadas comúnmente por el estado del arte. Usaremos vectores de características obtenidos con este modelo para entrenar un mapeo bilineal mediante una función de costo conocida como Triplet Loss. El objetivo del modelo final es obtener resultados cercanos al estado del arte, pero, utilizando un conjunto de datos de entrenamiento reducido. In this work we address the problem of facial recognition on images using convolutional neural networks. Successful results obtained by these models relies mainly on the availability of large amounts of manually annotated data for training. For the task of facial recognition, the lack of large-scale publicly available datasets has restricted most advances in the field to big companies like Facebook, Google, Baidu, etc. In our experiments, we start from a simple convolutional neural network trained on a standard facial recognition dataset several orders of magnitude smaller than those used by the state-of-the-art. We use features extracted from this model to train a bilinear map using a cost function known in the literature as Triplet Loss. The goal of such model is to get results as close as possible to those obtained by state-of-the-art models but using a much smaller training set. |
description |
Tesis (Lic. en Ciencias de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2018. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11086/11694 |
url |
http://hdl.handle.net/11086/11694 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1842349658016317440 |
score |
13.13397 |