Entrenamiento de modelos de aprendizaje profundo mediante autosupervisión
- Autores
- Torti López, Rubén Ezequiel
- Año de publicación
- 2017
- Idioma
- español castellano
- Tipo de recurso
- tesis de grado
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Sánchez, Jorge Adrián, dir.
- Descripción
- Tesis (Lic. en Ciencias de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2017.
Dentro del campo del aprendizaje automático, una clase de técnicas conocidas como Deep Learning (DL) han cobrado particular relevancia, ya que mediante su utilización se han conseguido mejoras muy significativas respecto de métodos tradicionales. Una desventaja de los modelos basados en DL es que usualmente cuentan con más parámetros que cantidad de elementos en los conjuntos de datos de entrenamiento. En el caso particular de la clasificación de imágenes por contenido, si bien existen grandes conjuntos de datos anotados disponibles, su generación para problemas en otros dominios es muy costosa. Se propone en este trabajo una manera alternativa al entrenamiento de esta clase de modelos inspirada en cómo los organismos vivientes desarrollan habilidades de percepción visual: moviéndose e interactuando con el mundo que los rodea. Partiendo de la hipótesis de que un agente puede usar la información del movimiento propio (rotación y traslación en los ejes X,Y,Z) como método de supervisión, Agrawal et al. ya han demostrado que es posible obtener buenos resultados entrenando con menos imágenes anotadas que lo usual. Se validan experimentalmente los resultados de este método de entrenamiento con respecto a los del estado del arte en tareas de clasificación en distintos dominios.
Within the field of machine learning, a class of techniques known as Deep Learning (DL) have become particularly relevant since their use have achieved significant improvements compared to traditional methods. A disadvantage of DL-based models is that they usually have much more parameters than elements in the training datasets. Despite the fact that there exist large annotated datasets for the task of image classification by content, the generation of new datasets for problems in other domains is very costly. There is an alternative way to train this kind of models inspired by how the living organisms develop visual perception skills: by moving and interacting with the world that surrounds them. By hypothesizing that an agent can use its own movement information (rotation and translation in the X, Y, Z axes) as a method of supervision, Agrawal et al. have already shown that it is possible to obtain good results when training with fewer annotated images than usual. In this work, the results of this method are validated with respect to the state of the art algorithms in tasks of classification in different domains. - Materia
-
Metodologías de computación
Redes neuronales
Computing methodologies
Neural networks
Aprendizaje automático
Redes siamesas
Aprendizaje semisupervisado
Visión por computadoras
Deep learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/6082
Ver los metadatos del registro completo
id |
RDUUNC_9bdae2367b00b59c43488899a49c036c |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/6082 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Entrenamiento de modelos de aprendizaje profundo mediante autosupervisiónTorti López, Rubén EzequielMetodologías de computaciónRedes neuronalesComputing methodologiesNeural networksAprendizaje automáticoRedes siamesasAprendizaje semisupervisadoVisión por computadorasDeep learningTesis (Lic. en Ciencias de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2017.Dentro del campo del aprendizaje automático, una clase de técnicas conocidas como Deep Learning (DL) han cobrado particular relevancia, ya que mediante su utilización se han conseguido mejoras muy significativas respecto de métodos tradicionales. Una desventaja de los modelos basados en DL es que usualmente cuentan con más parámetros que cantidad de elementos en los conjuntos de datos de entrenamiento. En el caso particular de la clasificación de imágenes por contenido, si bien existen grandes conjuntos de datos anotados disponibles, su generación para problemas en otros dominios es muy costosa. Se propone en este trabajo una manera alternativa al entrenamiento de esta clase de modelos inspirada en cómo los organismos vivientes desarrollan habilidades de percepción visual: moviéndose e interactuando con el mundo que los rodea. Partiendo de la hipótesis de que un agente puede usar la información del movimiento propio (rotación y traslación en los ejes X,Y,Z) como método de supervisión, Agrawal et al. ya han demostrado que es posible obtener buenos resultados entrenando con menos imágenes anotadas que lo usual. Se validan experimentalmente los resultados de este método de entrenamiento con respecto a los del estado del arte en tareas de clasificación en distintos dominios.Within the field of machine learning, a class of techniques known as Deep Learning (DL) have become particularly relevant since their use have achieved significant improvements compared to traditional methods. A disadvantage of DL-based models is that they usually have much more parameters than elements in the training datasets. Despite the fact that there exist large annotated datasets for the task of image classification by content, the generation of new datasets for problems in other domains is very costly. There is an alternative way to train this kind of models inspired by how the living organisms develop visual perception skills: by moving and interacting with the world that surrounds them. By hypothesizing that an agent can use its own movement information (rotation and translation in the X, Y, Z axes) as a method of supervision, Agrawal et al. have already shown that it is possible to obtain good results when training with fewer annotated images than usual. In this work, the results of this method are validated with respect to the state of the art algorithms in tasks of classification in different domains.Sánchez, Jorge Adrián, dir.2017-08info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/octet-streamhttp://hdl.handle.net/11086/6082spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-04T12:31:33Zoai:rdu.unc.edu.ar:11086/6082Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-04 12:31:34.15Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Entrenamiento de modelos de aprendizaje profundo mediante autosupervisión |
title |
Entrenamiento de modelos de aprendizaje profundo mediante autosupervisión |
spellingShingle |
Entrenamiento de modelos de aprendizaje profundo mediante autosupervisión Torti López, Rubén Ezequiel Metodologías de computación Redes neuronales Computing methodologies Neural networks Aprendizaje automático Redes siamesas Aprendizaje semisupervisado Visión por computadoras Deep learning |
title_short |
Entrenamiento de modelos de aprendizaje profundo mediante autosupervisión |
title_full |
Entrenamiento de modelos de aprendizaje profundo mediante autosupervisión |
title_fullStr |
Entrenamiento de modelos de aprendizaje profundo mediante autosupervisión |
title_full_unstemmed |
Entrenamiento de modelos de aprendizaje profundo mediante autosupervisión |
title_sort |
Entrenamiento de modelos de aprendizaje profundo mediante autosupervisión |
dc.creator.none.fl_str_mv |
Torti López, Rubén Ezequiel |
author |
Torti López, Rubén Ezequiel |
author_facet |
Torti López, Rubén Ezequiel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sánchez, Jorge Adrián, dir. |
dc.subject.none.fl_str_mv |
Metodologías de computación Redes neuronales Computing methodologies Neural networks Aprendizaje automático Redes siamesas Aprendizaje semisupervisado Visión por computadoras Deep learning |
topic |
Metodologías de computación Redes neuronales Computing methodologies Neural networks Aprendizaje automático Redes siamesas Aprendizaje semisupervisado Visión por computadoras Deep learning |
dc.description.none.fl_txt_mv |
Tesis (Lic. en Ciencias de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2017. Dentro del campo del aprendizaje automático, una clase de técnicas conocidas como Deep Learning (DL) han cobrado particular relevancia, ya que mediante su utilización se han conseguido mejoras muy significativas respecto de métodos tradicionales. Una desventaja de los modelos basados en DL es que usualmente cuentan con más parámetros que cantidad de elementos en los conjuntos de datos de entrenamiento. En el caso particular de la clasificación de imágenes por contenido, si bien existen grandes conjuntos de datos anotados disponibles, su generación para problemas en otros dominios es muy costosa. Se propone en este trabajo una manera alternativa al entrenamiento de esta clase de modelos inspirada en cómo los organismos vivientes desarrollan habilidades de percepción visual: moviéndose e interactuando con el mundo que los rodea. Partiendo de la hipótesis de que un agente puede usar la información del movimiento propio (rotación y traslación en los ejes X,Y,Z) como método de supervisión, Agrawal et al. ya han demostrado que es posible obtener buenos resultados entrenando con menos imágenes anotadas que lo usual. Se validan experimentalmente los resultados de este método de entrenamiento con respecto a los del estado del arte en tareas de clasificación en distintos dominios. Within the field of machine learning, a class of techniques known as Deep Learning (DL) have become particularly relevant since their use have achieved significant improvements compared to traditional methods. A disadvantage of DL-based models is that they usually have much more parameters than elements in the training datasets. Despite the fact that there exist large annotated datasets for the task of image classification by content, the generation of new datasets for problems in other domains is very costly. There is an alternative way to train this kind of models inspired by how the living organisms develop visual perception skills: by moving and interacting with the world that surrounds them. By hypothesizing that an agent can use its own movement information (rotation and translation in the X, Y, Z axes) as a method of supervision, Agrawal et al. have already shown that it is possible to obtain good results when training with fewer annotated images than usual. In this work, the results of this method are validated with respect to the state of the art algorithms in tasks of classification in different domains. |
description |
Tesis (Lic. en Ciencias de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2017. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11086/6082 |
url |
http://hdl.handle.net/11086/6082 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/octet-stream |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1842349618077106176 |
score |
13.13397 |