Learning slowly to learn better : curriculum learning for legal ontology population
- Autores
- Cardellino, Cristian; Teruel, Milagro; Alonso Alemany, Laura; Villata, Serena
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Ponencia presentada Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference
Fil: Cardellino, Cristian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Teruel, Milagro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Alonso Alemany, Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Alonso Alemany, Laura. Universite Cote d’Azur; France.
In this paper, we present an ontology population approach for legal ontologies. We exploit Wikipedia as a source of manually annotated examples of legal entities. We align YAGO, a Wikipedia-based ontology, and LKIF, an ontology specifically designed for the legal domain. Through this alignment, we can effectively populate the LKIF ontology, with the aim to obtain examples to train a Named Entity Recognizer and Classifier to be used for finding and classifying entities in legal texts. Since examples of annotated data in the legal domain are very few, we apply a machine learning strategy called curriculum learning aimed to overcome problems of overfitting by learning increasingly more complex concepts. We compare the performance of this method to identify Named Entities with respect to batch learning as well as two other baselines. Results are satisfying and foster further research in this direction.
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15526
Fil: Cardellino, Cristian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Teruel, Milagro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Alonso Alemany, Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Alonso Alemany, Laura. Universite Cote d’Azur; France.
Otras Ciencias de la Computación e Información - Materia
-
Ontologías
Procesamiento del lenguaje natural
Informática legal
Deep learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/552703
Ver los metadatos del registro completo
id |
RDUUNC_9cbc36bc9db428d6d74b44237599d4c8 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/552703 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Learning slowly to learn better : curriculum learning for legal ontology populationCardellino, CristianTeruel, MilagroAlonso Alemany, LauraVillata, SerenaOntologíasProcesamiento del lenguaje naturalInformática legalDeep learningPonencia presentada Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society ConferenceFil: Cardellino, Cristian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Teruel, Milagro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Alonso Alemany, Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Alonso Alemany, Laura. Universite Cote d’Azur; France.In this paper, we present an ontology population approach for legal ontologies. We exploit Wikipedia as a source of manually annotated examples of legal entities. We align YAGO, a Wikipedia-based ontology, and LKIF, an ontology specifically designed for the legal domain. Through this alignment, we can effectively populate the LKIF ontology, with the aim to obtain examples to train a Named Entity Recognizer and Classifier to be used for finding and classifying entities in legal texts. Since examples of annotated data in the legal domain are very few, we apply a machine learning strategy called curriculum learning aimed to overcome problems of overfitting by learning increasingly more complex concepts. We compare the performance of this method to identify Named Entities with respect to batch learning as well as two other baselines. Results are satisfying and foster further research in this direction.https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15526Fil: Cardellino, Cristian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Teruel, Milagro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Alonso Alemany, Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Alonso Alemany, Laura. Universite Cote d’Azur; France.Otras Ciencias de la Computación e Información2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf978-157735787-2http://hdl.handle.net/11086/552703enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:43:32Zoai:rdu.unc.edu.ar:11086/552703Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:43:33.239Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Learning slowly to learn better : curriculum learning for legal ontology population |
title |
Learning slowly to learn better : curriculum learning for legal ontology population |
spellingShingle |
Learning slowly to learn better : curriculum learning for legal ontology population Cardellino, Cristian Ontologías Procesamiento del lenguaje natural Informática legal Deep learning |
title_short |
Learning slowly to learn better : curriculum learning for legal ontology population |
title_full |
Learning slowly to learn better : curriculum learning for legal ontology population |
title_fullStr |
Learning slowly to learn better : curriculum learning for legal ontology population |
title_full_unstemmed |
Learning slowly to learn better : curriculum learning for legal ontology population |
title_sort |
Learning slowly to learn better : curriculum learning for legal ontology population |
dc.creator.none.fl_str_mv |
Cardellino, Cristian Teruel, Milagro Alonso Alemany, Laura Villata, Serena |
author |
Cardellino, Cristian |
author_facet |
Cardellino, Cristian Teruel, Milagro Alonso Alemany, Laura Villata, Serena |
author_role |
author |
author2 |
Teruel, Milagro Alonso Alemany, Laura Villata, Serena |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ontologías Procesamiento del lenguaje natural Informática legal Deep learning |
topic |
Ontologías Procesamiento del lenguaje natural Informática legal Deep learning |
dc.description.none.fl_txt_mv |
Ponencia presentada Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference Fil: Cardellino, Cristian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Teruel, Milagro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Alonso Alemany, Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Alonso Alemany, Laura. Universite Cote d’Azur; France. In this paper, we present an ontology population approach for legal ontologies. We exploit Wikipedia as a source of manually annotated examples of legal entities. We align YAGO, a Wikipedia-based ontology, and LKIF, an ontology specifically designed for the legal domain. Through this alignment, we can effectively populate the LKIF ontology, with the aim to obtain examples to train a Named Entity Recognizer and Classifier to be used for finding and classifying entities in legal texts. Since examples of annotated data in the legal domain are very few, we apply a machine learning strategy called curriculum learning aimed to overcome problems of overfitting by learning increasingly more complex concepts. We compare the performance of this method to identify Named Entities with respect to batch learning as well as two other baselines. Results are satisfying and foster further research in this direction. https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15526 Fil: Cardellino, Cristian. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Teruel, Milagro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Alonso Alemany, Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Alonso Alemany, Laura. Universite Cote d’Azur; France. Otras Ciencias de la Computación e Información |
description |
Ponencia presentada Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
978-157735787-2 http://hdl.handle.net/11086/552703 |
identifier_str_mv |
978-157735787-2 |
url |
http://hdl.handle.net/11086/552703 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618959004893184 |
score |
13.070432 |