Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases

Autores
Pacharoni, Maria Ines; Zurrián, Ignacio Nahuel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we exhibit explicitly a sequence of (Formula presented.) matrix valued orthogonal polynomials with respect to a weight (Formula presented.) , for any pair of real numbers p and n such that (Formula presented.). The entries of these polynomiales are expressed in terms of the Gegenbauer polynomials (Formula presented.). The corresponding three-term recursion relations are also given, and we make some studies of the algebra of differential operators associated with the weight (Formula presented.).
Fil: Pacharoni, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
MATRIX DIFFERENTIAL OPERATORS
MATRIX ORTHOGONAL POLYNOMIALS
OPERATORS ALGEBRA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58458

id CONICETDig_23a99ca40fc4689cfc79c1dd12e385e4
oai_identifier_str oai:ri.conicet.gov.ar:11336/58458
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental CasesPacharoni, Maria InesZurrián, Ignacio NahuelMATRIX DIFFERENTIAL OPERATORSMATRIX ORTHOGONAL POLYNOMIALSOPERATORS ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we exhibit explicitly a sequence of (Formula presented.) matrix valued orthogonal polynomials with respect to a weight (Formula presented.) , for any pair of real numbers p and n such that (Formula presented.). The entries of these polynomiales are expressed in terms of the Gegenbauer polynomials (Formula presented.). The corresponding three-term recursion relations are also given, and we make some studies of the algebra of differential operators associated with the weight (Formula presented.).Fil: Pacharoni, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58458Pacharoni, Maria Ines; Zurrián, Ignacio Nahuel; Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases; Springer; Constructive Approximation; 43; 2; 4-2016; 253-2710176-4276CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00365-015-9301-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s00365-015-9301-7info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.6902info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:49Zoai:ri.conicet.gov.ar:11336/58458instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:49.745CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases
title Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases
spellingShingle Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases
Pacharoni, Maria Ines
MATRIX DIFFERENTIAL OPERATORS
MATRIX ORTHOGONAL POLYNOMIALS
OPERATORS ALGEBRA
title_short Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases
title_full Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases
title_fullStr Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases
title_full_unstemmed Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases
title_sort Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases
dc.creator.none.fl_str_mv Pacharoni, Maria Ines
Zurrián, Ignacio Nahuel
author Pacharoni, Maria Ines
author_facet Pacharoni, Maria Ines
Zurrián, Ignacio Nahuel
author_role author
author2 Zurrián, Ignacio Nahuel
author2_role author
dc.subject.none.fl_str_mv MATRIX DIFFERENTIAL OPERATORS
MATRIX ORTHOGONAL POLYNOMIALS
OPERATORS ALGEBRA
topic MATRIX DIFFERENTIAL OPERATORS
MATRIX ORTHOGONAL POLYNOMIALS
OPERATORS ALGEBRA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we exhibit explicitly a sequence of (Formula presented.) matrix valued orthogonal polynomials with respect to a weight (Formula presented.) , for any pair of real numbers p and n such that (Formula presented.). The entries of these polynomiales are expressed in terms of the Gegenbauer polynomials (Formula presented.). The corresponding three-term recursion relations are also given, and we make some studies of the algebra of differential operators associated with the weight (Formula presented.).
Fil: Pacharoni, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description In this paper, we exhibit explicitly a sequence of (Formula presented.) matrix valued orthogonal polynomials with respect to a weight (Formula presented.) , for any pair of real numbers p and n such that (Formula presented.). The entries of these polynomiales are expressed in terms of the Gegenbauer polynomials (Formula presented.). The corresponding three-term recursion relations are also given, and we make some studies of the algebra of differential operators associated with the weight (Formula presented.).
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58458
Pacharoni, Maria Ines; Zurrián, Ignacio Nahuel; Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases; Springer; Constructive Approximation; 43; 2; 4-2016; 253-271
0176-4276
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58458
identifier_str_mv Pacharoni, Maria Ines; Zurrián, Ignacio Nahuel; Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases; Springer; Constructive Approximation; 43; 2; 4-2016; 253-271
0176-4276
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00365-015-9301-7
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00365-015-9301-7
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.6902
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613566024384512
score 13.070432