Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases
- Autores
- Pacharoni, Maria Ines; Zurrián, Ignacio Nahuel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we exhibit explicitly a sequence of (Formula presented.) matrix valued orthogonal polynomials with respect to a weight (Formula presented.) , for any pair of real numbers p and n such that (Formula presented.). The entries of these polynomiales are expressed in terms of the Gegenbauer polynomials (Formula presented.). The corresponding three-term recursion relations are also given, and we make some studies of the algebra of differential operators associated with the weight (Formula presented.).
Fil: Pacharoni, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
MATRIX DIFFERENTIAL OPERATORS
MATRIX ORTHOGONAL POLYNOMIALS
OPERATORS ALGEBRA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58458
Ver los metadatos del registro completo
| id |
CONICETDig_23a99ca40fc4689cfc79c1dd12e385e4 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58458 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental CasesPacharoni, Maria InesZurrián, Ignacio NahuelMATRIX DIFFERENTIAL OPERATORSMATRIX ORTHOGONAL POLYNOMIALSOPERATORS ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we exhibit explicitly a sequence of (Formula presented.) matrix valued orthogonal polynomials with respect to a weight (Formula presented.) , for any pair of real numbers p and n such that (Formula presented.). The entries of these polynomiales are expressed in terms of the Gegenbauer polynomials (Formula presented.). The corresponding three-term recursion relations are also given, and we make some studies of the algebra of differential operators associated with the weight (Formula presented.).Fil: Pacharoni, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58458Pacharoni, Maria Ines; Zurrián, Ignacio Nahuel; Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases; Springer; Constructive Approximation; 43; 2; 4-2016; 253-2710176-4276CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00365-015-9301-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s00365-015-9301-7info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.6902info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:20:11Zoai:ri.conicet.gov.ar:11336/58458instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:20:11.373CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases |
| title |
Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases |
| spellingShingle |
Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases Pacharoni, Maria Ines MATRIX DIFFERENTIAL OPERATORS MATRIX ORTHOGONAL POLYNOMIALS OPERATORS ALGEBRA |
| title_short |
Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases |
| title_full |
Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases |
| title_fullStr |
Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases |
| title_full_unstemmed |
Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases |
| title_sort |
Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases |
| dc.creator.none.fl_str_mv |
Pacharoni, Maria Ines Zurrián, Ignacio Nahuel |
| author |
Pacharoni, Maria Ines |
| author_facet |
Pacharoni, Maria Ines Zurrián, Ignacio Nahuel |
| author_role |
author |
| author2 |
Zurrián, Ignacio Nahuel |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
MATRIX DIFFERENTIAL OPERATORS MATRIX ORTHOGONAL POLYNOMIALS OPERATORS ALGEBRA |
| topic |
MATRIX DIFFERENTIAL OPERATORS MATRIX ORTHOGONAL POLYNOMIALS OPERATORS ALGEBRA |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper, we exhibit explicitly a sequence of (Formula presented.) matrix valued orthogonal polynomials with respect to a weight (Formula presented.) , for any pair of real numbers p and n such that (Formula presented.). The entries of these polynomiales are expressed in terms of the Gegenbauer polynomials (Formula presented.). The corresponding three-term recursion relations are also given, and we make some studies of the algebra of differential operators associated with the weight (Formula presented.). Fil: Pacharoni, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
| description |
In this paper, we exhibit explicitly a sequence of (Formula presented.) matrix valued orthogonal polynomials with respect to a weight (Formula presented.) , for any pair of real numbers p and n such that (Formula presented.). The entries of these polynomiales are expressed in terms of the Gegenbauer polynomials (Formula presented.). The corresponding three-term recursion relations are also given, and we make some studies of the algebra of differential operators associated with the weight (Formula presented.). |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58458 Pacharoni, Maria Ines; Zurrián, Ignacio Nahuel; Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases; Springer; Constructive Approximation; 43; 2; 4-2016; 253-271 0176-4276 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/58458 |
| identifier_str_mv |
Pacharoni, Maria Ines; Zurrián, Ignacio Nahuel; Matrix Gegenbauer Polynomials: The 2 × 2 Fundamental Cases; Springer; Constructive Approximation; 43; 2; 4-2016; 253-271 0176-4276 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00365-015-9301-7 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00365-015-9301-7 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.6902 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781689158696960 |
| score |
12.982451 |