Predicting dissolved organic matter lability and carbon accumulation in temperate freshwater ecosystems
- Autores
- Bastidas Navarro, Marcela; Schenone, Luca; Martyniuk, Nicolás; Vega, Evelyn; Balseiro, Esteban; Modenutti, Beatriz
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- conjunto de datos
- Estado
- versión aceptada
- Descripción
- Dissolved organic matter (DOM) dynamics influence aquatic ecosystem metabolism with ecological and biogeochemical effects. During microbial degradation, certain DOM molecules accumulate in the environments constituting the residual refractory pool that has a key role in the global carbon cycle by sequestering carbon in lakes and oceans. The present study aims to model the factors driving bacterial C-consumption, and thus predicting the potential residual carbon accumulation. We developed mechanistic models to represent bacterial C-consumption, considering the contribution of DOM quality and P and N concentrations in the total carbon pool. Based on 82 different environments we establish DOM components and nutrient concentration for deep lakes, shallow lakes, high altitude lakes, low-order streams, and wetlands from North-Andean Patagonian glacial lake district (around 41°S). We applied Bayesian methods to estimate model parameters from laboratory C-lability experiments performed in 29 environments. We tested the predictive accuracy of our models with an external dataset consisting of C-lability experiments with natural lake water enriched with organic matter from different sources. We found a model that performed excellently in both, fit to training data and prediction to external experiments. Based on the selected model, an increase in P concentration stimulates C-consumption, and an increase in the proportion of DOM protein-like compounds reduces the amount of residual C. Based on the predictive accuracy, we demonstrated that our model is very useful to anticipate C accumulation due to changes in the inputs to water bodies.
Fil: Bastidas Navarro, Marcela. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.
Fil: Bastidas Navarro, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Schenone, Luca. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.
Fil: Schenone, Luca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Martyniuk, Nicolás. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.
Fil: Martyniuk, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Vega, Evelyn. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.
Fil: Vega, Evelyn. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Balseiro, Esteban. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.
Fil: Balseiro, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Modenutti, Beatriz. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.
Fil: Modenutti, Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. - Materia
-
Bayesian
PARAFAC
Microbial respiration
Dissolved organic matter
Modeling
Forcasting
Ciencias de la tierra y Medio ambiente - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional del Comahue
- OAI Identificador
- oai:rdi.uncoma.edu.ar:uncomaid/15901
Ver los metadatos del registro completo
| id |
RDIUNCO_775f9978493351c43bc72eb8ff8cde3c |
|---|---|
| oai_identifier_str |
oai:rdi.uncoma.edu.ar:uncomaid/15901 |
| network_acronym_str |
RDIUNCO |
| repository_id_str |
7108 |
| network_name_str |
Repositorio Digital Institucional (UNCo) |
| spelling |
Predicting dissolved organic matter lability and carbon accumulation in temperate freshwater ecosystemsBastidas Navarro, MarcelaSchenone, LucaMartyniuk, NicolásVega, EvelynBalseiro, EstebanModenutti, BeatrizBayesianPARAFACMicrobial respirationDissolved organic matterModelingForcastinghttps://purl.org/becyt/ford/1.5Ciencias de la tierra y Medio ambienteDissolved organic matter (DOM) dynamics influence aquatic ecosystem metabolism with ecological and biogeochemical effects. During microbial degradation, certain DOM molecules accumulate in the environments constituting the residual refractory pool that has a key role in the global carbon cycle by sequestering carbon in lakes and oceans. The present study aims to model the factors driving bacterial C-consumption, and thus predicting the potential residual carbon accumulation. We developed mechanistic models to represent bacterial C-consumption, considering the contribution of DOM quality and P and N concentrations in the total carbon pool. Based on 82 different environments we establish DOM components and nutrient concentration for deep lakes, shallow lakes, high altitude lakes, low-order streams, and wetlands from North-Andean Patagonian glacial lake district (around 41°S). We applied Bayesian methods to estimate model parameters from laboratory C-lability experiments performed in 29 environments. We tested the predictive accuracy of our models with an external dataset consisting of C-lability experiments with natural lake water enriched with organic matter from different sources. We found a model that performed excellently in both, fit to training data and prediction to external experiments. Based on the selected model, an increase in P concentration stimulates C-consumption, and an increase in the proportion of DOM protein-like compounds reduces the amount of residual C. Based on the predictive accuracy, we demonstrated that our model is very useful to anticipate C accumulation due to changes in the inputs to water bodies.Fil: Bastidas Navarro, Marcela. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.Fil: Bastidas Navarro, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Schenone, Luca. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.Fil: Schenone, Luca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Martyniuk, Nicolás. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.Fil: Martyniuk, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Vega, Evelyn. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.Fil: Vega, Evelyn. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Balseiro, Esteban. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.Fil: Balseiro, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Modenutti, Beatriz. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina.Fil: Modenutti, Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Universidad Nacional del ComahueInstituto de Investigaciones en Biodiversidad y Medioambiente2020-08-26info:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_ddb1info:ar-repo/semantics/conjuntoDeDatosinfo:eu-repo/semantics/dataSetapplication/ms-excelapplication/octet-streamapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheethttp://rdi.uncoma.edu.ar/handle/uncomaid/15901engARGinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:Repositorio Digital Institucional (UNCo)instname:Universidad Nacional del Comahue2025-10-16T10:05:42Zoai:rdi.uncoma.edu.ar:uncomaid/15901instacron:UNCoInstitucionalhttp://rdi.uncoma.edu.ar/Universidad públicaNo correspondehttp://rdi.uncoma.edu.ar/oaimirtha.mateo@biblioteca.uncoma.edu.ar; adriana.acuna@biblioteca.uncoma.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:71082025-10-16 10:05:42.798Repositorio Digital Institucional (UNCo) - Universidad Nacional del Comahuefalse |
| dc.title.none.fl_str_mv |
Predicting dissolved organic matter lability and carbon accumulation in temperate freshwater ecosystems |
| title |
Predicting dissolved organic matter lability and carbon accumulation in temperate freshwater ecosystems |
| spellingShingle |
Predicting dissolved organic matter lability and carbon accumulation in temperate freshwater ecosystems Bastidas Navarro, Marcela Bayesian PARAFAC Microbial respiration Dissolved organic matter Modeling Forcasting Ciencias de la tierra y Medio ambiente |
| title_short |
Predicting dissolved organic matter lability and carbon accumulation in temperate freshwater ecosystems |
| title_full |
Predicting dissolved organic matter lability and carbon accumulation in temperate freshwater ecosystems |
| title_fullStr |
Predicting dissolved organic matter lability and carbon accumulation in temperate freshwater ecosystems |
| title_full_unstemmed |
Predicting dissolved organic matter lability and carbon accumulation in temperate freshwater ecosystems |
| title_sort |
Predicting dissolved organic matter lability and carbon accumulation in temperate freshwater ecosystems |
| dc.creator.none.fl_str_mv |
Bastidas Navarro, Marcela Schenone, Luca Martyniuk, Nicolás Vega, Evelyn Balseiro, Esteban Modenutti, Beatriz |
| author |
Bastidas Navarro, Marcela |
| author_facet |
Bastidas Navarro, Marcela Schenone, Luca Martyniuk, Nicolás Vega, Evelyn Balseiro, Esteban Modenutti, Beatriz |
| author_role |
author |
| author2 |
Schenone, Luca Martyniuk, Nicolás Vega, Evelyn Balseiro, Esteban Modenutti, Beatriz |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Bayesian PARAFAC Microbial respiration Dissolved organic matter Modeling Forcasting Ciencias de la tierra y Medio ambiente |
| topic |
Bayesian PARAFAC Microbial respiration Dissolved organic matter Modeling Forcasting Ciencias de la tierra y Medio ambiente |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 |
| dc.description.none.fl_txt_mv |
Dissolved organic matter (DOM) dynamics influence aquatic ecosystem metabolism with ecological and biogeochemical effects. During microbial degradation, certain DOM molecules accumulate in the environments constituting the residual refractory pool that has a key role in the global carbon cycle by sequestering carbon in lakes and oceans. The present study aims to model the factors driving bacterial C-consumption, and thus predicting the potential residual carbon accumulation. We developed mechanistic models to represent bacterial C-consumption, considering the contribution of DOM quality and P and N concentrations in the total carbon pool. Based on 82 different environments we establish DOM components and nutrient concentration for deep lakes, shallow lakes, high altitude lakes, low-order streams, and wetlands from North-Andean Patagonian glacial lake district (around 41°S). We applied Bayesian methods to estimate model parameters from laboratory C-lability experiments performed in 29 environments. We tested the predictive accuracy of our models with an external dataset consisting of C-lability experiments with natural lake water enriched with organic matter from different sources. We found a model that performed excellently in both, fit to training data and prediction to external experiments. Based on the selected model, an increase in P concentration stimulates C-consumption, and an increase in the proportion of DOM protein-like compounds reduces the amount of residual C. Based on the predictive accuracy, we demonstrated that our model is very useful to anticipate C accumulation due to changes in the inputs to water bodies. Fil: Bastidas Navarro, Marcela. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Fil: Bastidas Navarro, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Schenone, Luca. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Fil: Schenone, Luca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Martyniuk, Nicolás. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Fil: Martyniuk, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Vega, Evelyn. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Fil: Vega, Evelyn. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Balseiro, Esteban. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Fil: Balseiro, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Modenutti, Beatriz. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Fil: Modenutti, Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. |
| description |
Dissolved organic matter (DOM) dynamics influence aquatic ecosystem metabolism with ecological and biogeochemical effects. During microbial degradation, certain DOM molecules accumulate in the environments constituting the residual refractory pool that has a key role in the global carbon cycle by sequestering carbon in lakes and oceans. The present study aims to model the factors driving bacterial C-consumption, and thus predicting the potential residual carbon accumulation. We developed mechanistic models to represent bacterial C-consumption, considering the contribution of DOM quality and P and N concentrations in the total carbon pool. Based on 82 different environments we establish DOM components and nutrient concentration for deep lakes, shallow lakes, high altitude lakes, low-order streams, and wetlands from North-Andean Patagonian glacial lake district (around 41°S). We applied Bayesian methods to estimate model parameters from laboratory C-lability experiments performed in 29 environments. We tested the predictive accuracy of our models with an external dataset consisting of C-lability experiments with natural lake water enriched with organic matter from different sources. We found a model that performed excellently in both, fit to training data and prediction to external experiments. Based on the selected model, an increase in P concentration stimulates C-consumption, and an increase in the proportion of DOM protein-like compounds reduces the amount of residual C. Based on the predictive accuracy, we demonstrated that our model is very useful to anticipate C accumulation due to changes in the inputs to water bodies. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-08-26 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_ddb1 info:ar-repo/semantics/conjuntoDeDatos info:eu-repo/semantics/dataSet |
| status_str |
acceptedVersion |
| format |
dataSet |
| dc.identifier.none.fl_str_mv |
http://rdi.uncoma.edu.ar/handle/uncomaid/15901 |
| url |
http://rdi.uncoma.edu.ar/handle/uncomaid/15901 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/ms-excel application/octet-stream application/vnd.openxmlformats-officedocument.spreadsheetml.sheet |
| dc.coverage.none.fl_str_mv |
ARG |
| dc.publisher.none.fl_str_mv |
Universidad Nacional del Comahue Instituto de Investigaciones en Biodiversidad y Medioambiente |
| publisher.none.fl_str_mv |
Universidad Nacional del Comahue Instituto de Investigaciones en Biodiversidad y Medioambiente |
| dc.source.none.fl_str_mv |
reponame:Repositorio Digital Institucional (UNCo) instname:Universidad Nacional del Comahue |
| reponame_str |
Repositorio Digital Institucional (UNCo) |
| collection |
Repositorio Digital Institucional (UNCo) |
| instname_str |
Universidad Nacional del Comahue |
| repository.name.fl_str_mv |
Repositorio Digital Institucional (UNCo) - Universidad Nacional del Comahue |
| repository.mail.fl_str_mv |
mirtha.mateo@biblioteca.uncoma.edu.ar; adriana.acuna@biblioteca.uncoma.edu.ar |
| _version_ |
1846145871936225280 |
| score |
12.8982525 |