El significado de la negación paraconsistente

Autores
Palau, Gladys; Duran, Cecilia
Año de publicación
2009
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work agrees and supports the I. Hacking's thesis regarding the meaning of the logical constants accordingly with Gentzen's Introduction and Elimination Rules of Sequent Calculus, corresponding with the abstract conception of the notion of logical consequence. We would like to ask for the minimum rules that must satisfy a connective in order to be considered as a genuine negation. Mainly, we will refer to both da Costa's C-Systems and Priest's LP system. Finally, we will analyze the presentations of these systems within the Se- quent Logic to show that paraconsistent negation lacks of pure rules of negation-elimination and negation-introduction rules or that they involve other connectives, thus making difficult to assign an univocal meaning to paraconsistent negation.
Fil: Palau, Gladys. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Fil: Duran, Cecilia. Universidad Nacional de La Plata.
Fuente
Principia, 13(3), 357-370. (2009)
ISSN 1808-1711
Materia
Filosofía
Lógica
Ciencia
Hacking, Ian
Paraconsistent logic
Negation
Sequent calculus
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Memoria Académica (UNLP-FAHCE)
Institución
Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación
OAI Identificador
oai:memoria.fahce.unlp.edu.ar:snrd:Jpr9665

id MemAca_bba053e220400b4298a07af13b1c6ad1
oai_identifier_str oai:memoria.fahce.unlp.edu.ar:snrd:Jpr9665
network_acronym_str MemAca
repository_id_str 1341
network_name_str Memoria Académica (UNLP-FAHCE)
spelling El significado de la negación paraconsistentePalau, GladysDuran, CeciliaFilosofíaLógicaCienciaHacking, IanParaconsistent logicNegationSequent calculusThis work agrees and supports the I. Hacking's thesis regarding the meaning of the logical constants accordingly with Gentzen's Introduction and Elimination Rules of Sequent Calculus, corresponding with the abstract conception of the notion of logical consequence. We would like to ask for the minimum rules that must satisfy a connective in order to be considered as a genuine negation. Mainly, we will refer to both da Costa's C-Systems and Priest's LP system. Finally, we will analyze the presentations of these systems within the Se- quent Logic to show that paraconsistent negation lacks of pure rules of negation-elimination and negation-introduction rules or that they involve other connectives, thus making difficult to assign an univocal meaning to paraconsistent negation.Fil: Palau, Gladys. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.Fil: Duran, Cecilia. Universidad Nacional de La Plata.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.memoria.fahce.unlp.edu.ar/art_revistas/pr.9665/pr.9665.pdfPrincipia, 13(3), 357-370. (2009)ISSN 1808-1711reponame:Memoria Académica (UNLP-FAHCE)instname:Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educacióninstacron:UNLPspainfo:eu-repo/semantics/altIdentifier/hdl/10915/88895info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-09-29T11:58:11Zoai:memoria.fahce.unlp.edu.ar:snrd:Jpr9665Institucionalhttps://www.memoria.fahce.unlp.edu.ar/Universidad públicahttps://www.fahce.unlp.edu.ar/https://www.memoria.fahce.unlp.edu.ar/oaiserver.cgimemoria@fahce.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13412025-09-29 11:58:12.842Memoria Académica (UNLP-FAHCE) - Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educaciónfalse
dc.title.none.fl_str_mv El significado de la negación paraconsistente
title El significado de la negación paraconsistente
spellingShingle El significado de la negación paraconsistente
Palau, Gladys
Filosofía
Lógica
Ciencia
Hacking, Ian
Paraconsistent logic
Negation
Sequent calculus
title_short El significado de la negación paraconsistente
title_full El significado de la negación paraconsistente
title_fullStr El significado de la negación paraconsistente
title_full_unstemmed El significado de la negación paraconsistente
title_sort El significado de la negación paraconsistente
dc.creator.none.fl_str_mv Palau, Gladys
Duran, Cecilia
author Palau, Gladys
author_facet Palau, Gladys
Duran, Cecilia
author_role author
author2 Duran, Cecilia
author2_role author
dc.subject.none.fl_str_mv Filosofía
Lógica
Ciencia
Hacking, Ian
Paraconsistent logic
Negation
Sequent calculus
topic Filosofía
Lógica
Ciencia
Hacking, Ian
Paraconsistent logic
Negation
Sequent calculus
dc.description.none.fl_txt_mv This work agrees and supports the I. Hacking's thesis regarding the meaning of the logical constants accordingly with Gentzen's Introduction and Elimination Rules of Sequent Calculus, corresponding with the abstract conception of the notion of logical consequence. We would like to ask for the minimum rules that must satisfy a connective in order to be considered as a genuine negation. Mainly, we will refer to both da Costa's C-Systems and Priest's LP system. Finally, we will analyze the presentations of these systems within the Se- quent Logic to show that paraconsistent negation lacks of pure rules of negation-elimination and negation-introduction rules or that they involve other connectives, thus making difficult to assign an univocal meaning to paraconsistent negation.
Fil: Palau, Gladys. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Fil: Duran, Cecilia. Universidad Nacional de La Plata.
description This work agrees and supports the I. Hacking's thesis regarding the meaning of the logical constants accordingly with Gentzen's Introduction and Elimination Rules of Sequent Calculus, corresponding with the abstract conception of the notion of logical consequence. We would like to ask for the minimum rules that must satisfy a connective in order to be considered as a genuine negation. Mainly, we will refer to both da Costa's C-Systems and Priest's LP system. Finally, we will analyze the presentations of these systems within the Se- quent Logic to show that paraconsistent negation lacks of pure rules of negation-elimination and negation-introduction rules or that they involve other connectives, thus making difficult to assign an univocal meaning to paraconsistent negation.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://www.memoria.fahce.unlp.edu.ar/art_revistas/pr.9665/pr.9665.pdf
url https://www.memoria.fahce.unlp.edu.ar/art_revistas/pr.9665/pr.9665.pdf
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/hdl/10915/88895
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Principia, 13(3), 357-370. (2009)
ISSN 1808-1711
reponame:Memoria Académica (UNLP-FAHCE)
instname:Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación
instacron:UNLP
reponame_str Memoria Académica (UNLP-FAHCE)
collection Memoria Académica (UNLP-FAHCE)
instname_str Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv Memoria Académica (UNLP-FAHCE) - Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación
repository.mail.fl_str_mv memoria@fahce.unlp.edu.ar
_version_ 1844616571826208768
score 13.070432