Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using wavelets
- Autores
- Bruzzone, Octavio Augusto; Hurtado, Santiago Ignacio; Perri, Daiana Vanesa; Maddio, Rafael Adrián; Sello, Mario Eugenio; Easdale, Marcos Horacio
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Climate change poses challenges in classifying ecosystem dynamics, as they are influenced by shifting dynamics resulting from changes in climate forces and meteorological variables, including temperature and water availability. To address this, our study presents a novel approach using Continuous Wavelet Transform (CWT) and power spectrum analysis to classify vegetation dynamics, considering the time-dependent variability of ecosystem frequencies. We applied our method to centred and standardized MODIS NDVI time series for the period 2000–2021, using an experimental field station in northern Patagonia as a case study. By performing a continuous wavelet transform on the data for each pixel, we obtained instantaneous power spectra, capturing variability across different dates and pixels. These spectrums were then consolidated into a comprehensive database, and subsequently classified using archetypal analysis. We identified a convex combination of archetypal spectrums that best represented the entire power spectrum database. Mapping the resulting archetypes and their weights in both space and time allowed us to explore pixels' variations in archetype weights in relation to factors such as time, topography, and climate. In addition, to examine the potential relationship between the NDVI time series and climate drivers, we computed the Average Cross-Wavelet Power Spectrum (ACWPS) to different climatic indices. Three archetypes were sufficient to explain the majority of power spectrum variability in the study area. These archetypes exhibited distinctive characteristics: 1) medium-frequency variability (2–4 years), 2) low-frequency variability (>4 years), and 3) an annual (i.e. seasonal) cycle with low-frequency variability. Spatially, the first two archetypes were predominantly observed in highland steppes, while the third archetype prevailed in lowland areas associated with meadows. At the beginning of the studied period, Archetypes 1 and 3 dominated, but after the Puyehue-Cordón Caulle Volcanic Complex eruption in 2011 their prominence diminished, and Archetype 2 became more prevalent in the whole study area. Finally, all three NDVI series representative of archetypes showed a relative peak at approximately four years, which could be linked to the Indian Ocean Dipole variability. These results highlight an abrupt shift in the system's behaviour, primarily related to changes in variability distribution rather than mean values. This disturbance-induced transition aligns with the theory of state and transitions in ecological system dynamics. We propose that the states in this model are not fixed but represent alternative dynamic behaviours, akin to different types of limit cycles. Consequently, employing a wavelet analysis-based classification method provides a robust means of studying and understanding such variability and transitions, thereby offering clarity and comprehension of ecosystem states. Notably, this methodology proves particularly effective for large databases of detailed time series.
EEA Bariloche
Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina
Fil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina
Fil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina
Fil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina
Fil: Perri, Daiana Vanesa. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina
Fil: Perri, Daiana Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina
Fil: Maddio, Rafael Adrián. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina
Fil: Maddio, Rafael Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina
Fil: Sello, Mario Eugenio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina
Fil: Sello, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina
Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina
Fil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina - Fuente
- Remote Sensing of Environment 308 : 114203. (July 2024)
- Materia
-
Tierras de Pastos
Zona Semiárida
Cambio Climático
Medio Ambiente
Estepas
Indice Normalizado Diferencial de la Vegetación
Rangelands
Semiarid Zones
Climate Change
Environment
Steppes
Normalized Difference Vegetation Index
NDVI - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/18890
Ver los metadatos del registro completo
id |
INTADig_ff8991738fa3a2e962656ddb0b214082 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/18890 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using waveletsBruzzone, Octavio AugustoHurtado, Santiago IgnacioPerri, Daiana VanesaMaddio, Rafael AdriánSello, Mario EugenioEasdale, Marcos HoracioTierras de PastosZona SemiáridaCambio ClimáticoMedio AmbienteEstepasIndice Normalizado Diferencial de la VegetaciónRangelandsSemiarid ZonesClimate ChangeEnvironmentSteppesNormalized Difference Vegetation IndexNDVIClimate change poses challenges in classifying ecosystem dynamics, as they are influenced by shifting dynamics resulting from changes in climate forces and meteorological variables, including temperature and water availability. To address this, our study presents a novel approach using Continuous Wavelet Transform (CWT) and power spectrum analysis to classify vegetation dynamics, considering the time-dependent variability of ecosystem frequencies. We applied our method to centred and standardized MODIS NDVI time series for the period 2000–2021, using an experimental field station in northern Patagonia as a case study. By performing a continuous wavelet transform on the data for each pixel, we obtained instantaneous power spectra, capturing variability across different dates and pixels. These spectrums were then consolidated into a comprehensive database, and subsequently classified using archetypal analysis. We identified a convex combination of archetypal spectrums that best represented the entire power spectrum database. Mapping the resulting archetypes and their weights in both space and time allowed us to explore pixels' variations in archetype weights in relation to factors such as time, topography, and climate. In addition, to examine the potential relationship between the NDVI time series and climate drivers, we computed the Average Cross-Wavelet Power Spectrum (ACWPS) to different climatic indices. Three archetypes were sufficient to explain the majority of power spectrum variability in the study area. These archetypes exhibited distinctive characteristics: 1) medium-frequency variability (2–4 years), 2) low-frequency variability (>4 years), and 3) an annual (i.e. seasonal) cycle with low-frequency variability. Spatially, the first two archetypes were predominantly observed in highland steppes, while the third archetype prevailed in lowland areas associated with meadows. At the beginning of the studied period, Archetypes 1 and 3 dominated, but after the Puyehue-Cordón Caulle Volcanic Complex eruption in 2011 their prominence diminished, and Archetype 2 became more prevalent in the whole study area. Finally, all three NDVI series representative of archetypes showed a relative peak at approximately four years, which could be linked to the Indian Ocean Dipole variability. These results highlight an abrupt shift in the system's behaviour, primarily related to changes in variability distribution rather than mean values. This disturbance-induced transition aligns with the theory of state and transitions in ecological system dynamics. We propose that the states in this model are not fixed but represent alternative dynamic behaviours, akin to different types of limit cycles. Consequently, employing a wavelet analysis-based classification method provides a robust means of studying and understanding such variability and transitions, thereby offering clarity and comprehension of ecosystem states. Notably, this methodology proves particularly effective for large databases of detailed time series.EEA BarilocheFil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); ArgentinaFil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); ArgentinaFil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); ArgentinaFil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); ArgentinaFil: Perri, Daiana Vanesa. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); ArgentinaFil: Perri, Daiana Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); ArgentinaFil: Maddio, Rafael Adrián. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); ArgentinaFil: Maddio, Rafael Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); ArgentinaFil: Sello, Mario Eugenio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); ArgentinaFil: Sello, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); ArgentinaFil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); ArgentinaFil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); ArgentinaElsevier2024-08-09T14:48:45Z2024-08-09T14:48:45Z2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/18890https://www.sciencedirect.com/science/article/abs/pii/S00344257240022190034-42571879-0704https://doi.org/10.1016/j.rse.2024.114203Remote Sensing of Environment 308 : 114203. (July 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:46:43Zoai:localhost:20.500.12123/18890instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:46:45.227INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using wavelets |
title |
Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using wavelets |
spellingShingle |
Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using wavelets Bruzzone, Octavio Augusto Tierras de Pastos Zona Semiárida Cambio Climático Medio Ambiente Estepas Indice Normalizado Diferencial de la Vegetación Rangelands Semiarid Zones Climate Change Environment Steppes Normalized Difference Vegetation Index NDVI |
title_short |
Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using wavelets |
title_full |
Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using wavelets |
title_fullStr |
Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using wavelets |
title_full_unstemmed |
Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using wavelets |
title_sort |
Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using wavelets |
dc.creator.none.fl_str_mv |
Bruzzone, Octavio Augusto Hurtado, Santiago Ignacio Perri, Daiana Vanesa Maddio, Rafael Adrián Sello, Mario Eugenio Easdale, Marcos Horacio |
author |
Bruzzone, Octavio Augusto |
author_facet |
Bruzzone, Octavio Augusto Hurtado, Santiago Ignacio Perri, Daiana Vanesa Maddio, Rafael Adrián Sello, Mario Eugenio Easdale, Marcos Horacio |
author_role |
author |
author2 |
Hurtado, Santiago Ignacio Perri, Daiana Vanesa Maddio, Rafael Adrián Sello, Mario Eugenio Easdale, Marcos Horacio |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Tierras de Pastos Zona Semiárida Cambio Climático Medio Ambiente Estepas Indice Normalizado Diferencial de la Vegetación Rangelands Semiarid Zones Climate Change Environment Steppes Normalized Difference Vegetation Index NDVI |
topic |
Tierras de Pastos Zona Semiárida Cambio Climático Medio Ambiente Estepas Indice Normalizado Diferencial de la Vegetación Rangelands Semiarid Zones Climate Change Environment Steppes Normalized Difference Vegetation Index NDVI |
dc.description.none.fl_txt_mv |
Climate change poses challenges in classifying ecosystem dynamics, as they are influenced by shifting dynamics resulting from changes in climate forces and meteorological variables, including temperature and water availability. To address this, our study presents a novel approach using Continuous Wavelet Transform (CWT) and power spectrum analysis to classify vegetation dynamics, considering the time-dependent variability of ecosystem frequencies. We applied our method to centred and standardized MODIS NDVI time series for the period 2000–2021, using an experimental field station in northern Patagonia as a case study. By performing a continuous wavelet transform on the data for each pixel, we obtained instantaneous power spectra, capturing variability across different dates and pixels. These spectrums were then consolidated into a comprehensive database, and subsequently classified using archetypal analysis. We identified a convex combination of archetypal spectrums that best represented the entire power spectrum database. Mapping the resulting archetypes and their weights in both space and time allowed us to explore pixels' variations in archetype weights in relation to factors such as time, topography, and climate. In addition, to examine the potential relationship between the NDVI time series and climate drivers, we computed the Average Cross-Wavelet Power Spectrum (ACWPS) to different climatic indices. Three archetypes were sufficient to explain the majority of power spectrum variability in the study area. These archetypes exhibited distinctive characteristics: 1) medium-frequency variability (2–4 years), 2) low-frequency variability (>4 years), and 3) an annual (i.e. seasonal) cycle with low-frequency variability. Spatially, the first two archetypes were predominantly observed in highland steppes, while the third archetype prevailed in lowland areas associated with meadows. At the beginning of the studied period, Archetypes 1 and 3 dominated, but after the Puyehue-Cordón Caulle Volcanic Complex eruption in 2011 their prominence diminished, and Archetype 2 became more prevalent in the whole study area. Finally, all three NDVI series representative of archetypes showed a relative peak at approximately four years, which could be linked to the Indian Ocean Dipole variability. These results highlight an abrupt shift in the system's behaviour, primarily related to changes in variability distribution rather than mean values. This disturbance-induced transition aligns with the theory of state and transitions in ecological system dynamics. We propose that the states in this model are not fixed but represent alternative dynamic behaviours, akin to different types of limit cycles. Consequently, employing a wavelet analysis-based classification method provides a robust means of studying and understanding such variability and transitions, thereby offering clarity and comprehension of ecosystem states. Notably, this methodology proves particularly effective for large databases of detailed time series. EEA Bariloche Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina Fil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina Fil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina Fil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina Fil: Perri, Daiana Vanesa. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina Fil: Perri, Daiana Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina Fil: Maddio, Rafael Adrián. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina Fil: Maddio, Rafael Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina Fil: Sello, Mario Eugenio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina Fil: Sello, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB); Argentina Fil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB); Argentina |
description |
Climate change poses challenges in classifying ecosystem dynamics, as they are influenced by shifting dynamics resulting from changes in climate forces and meteorological variables, including temperature and water availability. To address this, our study presents a novel approach using Continuous Wavelet Transform (CWT) and power spectrum analysis to classify vegetation dynamics, considering the time-dependent variability of ecosystem frequencies. We applied our method to centred and standardized MODIS NDVI time series for the period 2000–2021, using an experimental field station in northern Patagonia as a case study. By performing a continuous wavelet transform on the data for each pixel, we obtained instantaneous power spectra, capturing variability across different dates and pixels. These spectrums were then consolidated into a comprehensive database, and subsequently classified using archetypal analysis. We identified a convex combination of archetypal spectrums that best represented the entire power spectrum database. Mapping the resulting archetypes and their weights in both space and time allowed us to explore pixels' variations in archetype weights in relation to factors such as time, topography, and climate. In addition, to examine the potential relationship between the NDVI time series and climate drivers, we computed the Average Cross-Wavelet Power Spectrum (ACWPS) to different climatic indices. Three archetypes were sufficient to explain the majority of power spectrum variability in the study area. These archetypes exhibited distinctive characteristics: 1) medium-frequency variability (2–4 years), 2) low-frequency variability (>4 years), and 3) an annual (i.e. seasonal) cycle with low-frequency variability. Spatially, the first two archetypes were predominantly observed in highland steppes, while the third archetype prevailed in lowland areas associated with meadows. At the beginning of the studied period, Archetypes 1 and 3 dominated, but after the Puyehue-Cordón Caulle Volcanic Complex eruption in 2011 their prominence diminished, and Archetype 2 became more prevalent in the whole study area. Finally, all three NDVI series representative of archetypes showed a relative peak at approximately four years, which could be linked to the Indian Ocean Dipole variability. These results highlight an abrupt shift in the system's behaviour, primarily related to changes in variability distribution rather than mean values. This disturbance-induced transition aligns with the theory of state and transitions in ecological system dynamics. We propose that the states in this model are not fixed but represent alternative dynamic behaviours, akin to different types of limit cycles. Consequently, employing a wavelet analysis-based classification method provides a robust means of studying and understanding such variability and transitions, thereby offering clarity and comprehension of ecosystem states. Notably, this methodology proves particularly effective for large databases of detailed time series. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08-09T14:48:45Z 2024-08-09T14:48:45Z 2024-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/18890 https://www.sciencedirect.com/science/article/abs/pii/S0034425724002219 0034-4257 1879-0704 https://doi.org/10.1016/j.rse.2024.114203 |
url |
http://hdl.handle.net/20.500.12123/18890 https://www.sciencedirect.com/science/article/abs/pii/S0034425724002219 https://doi.org/10.1016/j.rse.2024.114203 |
identifier_str_mv |
0034-4257 1879-0704 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Remote Sensing of Environment 308 : 114203. (July 2024) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619191968071680 |
score |
12.559606 |