Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climates
- Autores
- Brambilla, Silvina Maricel; Soto, Gabriela; Odorizzi, Ariel; Arolfo, Valeria; McCormick, Wayne; Primo, Emiliano; Giordano, Walter; Jozefkowicz, Cintia; Ayub, Nicolás Daniel
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1–6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (−ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4–6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability.
Instituto de Biotecnología
Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina.
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina.
Fil: Odorizzi, Ariel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentina
Fil: Arolfo, Valeria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentina
Fil: McCormick, Wayne. Ottawa Research and Development Centre; Canadá
Fil: Primo, Emiliano. Universidad Nacional de Río Cuarto. Departamento de Biología Molecular; Argentina
Fil: Giordano, Walter. Universidad Nacional de Río Cuarto. Departamento de Biología Molecular; Argentina
Fil: Jozefkowicz, Cintia . Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina.
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentin - Fuente
- Microbial Ecology 79 : 1044–1053 (2020)
- Materia
-
Medicago sativa
Óxido Nitroso
Inoculación
Nitrato Reductasa
Rhizobiaceae
Factores Climáticos
Nitrous Oxide
Inoculation
Nitrate Reductase
Genes
Climatic Factors
Alfalfa
Sinorhizobium meliloti
Lucerne - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/7665
Ver los metadatos del registro completo
id |
INTADig_f7db8a53758b0bb05946afdc9dd03758 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/7665 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different ClimatesBrambilla, Silvina MaricelSoto, GabrielaOdorizzi, ArielArolfo, ValeriaMcCormick, WaynePrimo, EmilianoGiordano, WalterJozefkowicz, CintiaAyub, Nicolás DanielMedicago sativaÓxido NitrosoInoculaciónNitrato ReductasaRhizobiaceaeFactores ClimáticosNitrous OxideInoculationNitrate ReductaseGenesClimatic FactorsAlfalfaSinorhizobium melilotiLucerneWe have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1–6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (−ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4–6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability.Instituto de BiotecnologíaFil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina.Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina.Fil: Odorizzi, Ariel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; ArgentinaFil: Arolfo, Valeria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; ArgentinaFil: McCormick, Wayne. Ottawa Research and Development Centre; CanadáFil: Primo, Emiliano. Universidad Nacional de Río Cuarto. Departamento de Biología Molecular; ArgentinaFil: Giordano, Walter. Universidad Nacional de Río Cuarto. Departamento de Biología Molecular; ArgentinaFil: Jozefkowicz, Cintia . Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina.Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; ArgentinSpringer2020-08-04T11:39:43Z2020-08-04T11:39:43Z2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/7665https://link.springer.com/article/10.1007/s00248-019-01473-w0095-36281432-184Xhttps://doi.org/10.1007/s00248-019-01473-wMicrobial Ecology 79 : 1044–1053 (2020)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:59Zoai:localhost:20.500.12123/7665instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:00.101INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climates |
title |
Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climates |
spellingShingle |
Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climates Brambilla, Silvina Maricel Medicago sativa Óxido Nitroso Inoculación Nitrato Reductasa Rhizobiaceae Factores Climáticos Nitrous Oxide Inoculation Nitrate Reductase Genes Climatic Factors Alfalfa Sinorhizobium meliloti Lucerne |
title_short |
Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climates |
title_full |
Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climates |
title_fullStr |
Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climates |
title_full_unstemmed |
Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climates |
title_sort |
Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climates |
dc.creator.none.fl_str_mv |
Brambilla, Silvina Maricel Soto, Gabriela Odorizzi, Ariel Arolfo, Valeria McCormick, Wayne Primo, Emiliano Giordano, Walter Jozefkowicz, Cintia Ayub, Nicolás Daniel |
author |
Brambilla, Silvina Maricel |
author_facet |
Brambilla, Silvina Maricel Soto, Gabriela Odorizzi, Ariel Arolfo, Valeria McCormick, Wayne Primo, Emiliano Giordano, Walter Jozefkowicz, Cintia Ayub, Nicolás Daniel |
author_role |
author |
author2 |
Soto, Gabriela Odorizzi, Ariel Arolfo, Valeria McCormick, Wayne Primo, Emiliano Giordano, Walter Jozefkowicz, Cintia Ayub, Nicolás Daniel |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Medicago sativa Óxido Nitroso Inoculación Nitrato Reductasa Rhizobiaceae Factores Climáticos Nitrous Oxide Inoculation Nitrate Reductase Genes Climatic Factors Alfalfa Sinorhizobium meliloti Lucerne |
topic |
Medicago sativa Óxido Nitroso Inoculación Nitrato Reductasa Rhizobiaceae Factores Climáticos Nitrous Oxide Inoculation Nitrate Reductase Genes Climatic Factors Alfalfa Sinorhizobium meliloti Lucerne |
dc.description.none.fl_txt_mv |
We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1–6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (−ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4–6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability. Instituto de Biotecnología Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina. Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina. Fil: Odorizzi, Ariel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentina Fil: Arolfo, Valeria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentina Fil: McCormick, Wayne. Ottawa Research and Development Centre; Canadá Fil: Primo, Emiliano. Universidad Nacional de Río Cuarto. Departamento de Biología Molecular; Argentina Fil: Giordano, Walter. Universidad Nacional de Río Cuarto. Departamento de Biología Molecular; Argentina Fil: Jozefkowicz, Cintia . Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina. Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentin |
description |
We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1–6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (−ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4–6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-04T11:39:43Z 2020-08-04T11:39:43Z 2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/7665 https://link.springer.com/article/10.1007/s00248-019-01473-w 0095-3628 1432-184X https://doi.org/10.1007/s00248-019-01473-w |
url |
http://hdl.handle.net/20.500.12123/7665 https://link.springer.com/article/10.1007/s00248-019-01473-w https://doi.org/10.1007/s00248-019-01473-w |
identifier_str_mv |
0095-3628 1432-184X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Microbial Ecology 79 : 1044–1053 (2020) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619146161029120 |
score |
12.559606 |