Development of a platform process for the production and purification of single‐domain antibodies
- Autores
- Crowell, Laura E.; Goodwine, Chaz; Sosa Holt, Carla Solange; Rocha, Lucía Alejandra; Vega, Celina Guadalupe; Rodriguez-Aponte, Sergio A.; Dalvie, Neil C.; Tracey, Mary Kate; Puntel, Mariana; Wigdorovitz, Andres; Parreño, Gladys; Love, Kerry R.; Cramer, Steven M.; Love, J. Christopher
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Single-domain antibodies (sdAbs) offer the affinity and therapeutic value of conventional antibodies, with increased stability and solubility. Unlike conventional antibodies, however, sdAbs do not benefit from a platform manufacturing process. While successful production of a variety of sdAbs has been shown in numerous hosts, purification methods are often molecule specific or require affinity tags, which generally cannot be used in clinical manufacturing due to regulatory concerns. Here, we have developed a broadly applicable production and purification process for sdAbs in Komagataella phaffii (Pichia pastoris) and demonstrated the production of eight different sdAbs at a quality appropriate for nonclinical studies. We developed a two-step, integrated purification process without the use of affinity resins and showed that modification of a single process parameter, pH of the bridging buffer, was required for the successful purification of a variety of sdAbs. Further, we determined that this parameter can be predicted based only on the biophysical characteristics of the target molecule. Using these methods, we produced nonclinical quality sdAbs as few as 5 weeks after identifying the product sequence. Nonclinical studies of three different sdAbs showed that molecules produced using our platform process conferred protection against viral shedding of rotavirus or H1N1 influenza and were equivalent to similar molecules produced in Escherichia coli and purified using affinity tags.
Instituto de Virología
Fil: Crowell, Laura E. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Crowell, Laura E. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados Unidos
Fil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados Unidos
Fil: Sosa Holt, Carla Solange. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Rocha, Lucía Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. Department of Biological Engineering; Estados Unidos
Fil: Dalvie, Neil C. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Dalvie, Neil C. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Tracey, Mary Kate. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Puntel, Mariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Wigdorovitz, Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Love, Kerry R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Cramer, Steven M. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados Unidos
Fil: Cramer, Steven M. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos - Fuente
- Biotechnology and Bioengineering 118 (9) : 3348-3358. (September 2021)
- Materia
-
Pichia pastoris
Purificación
Anticuerpos
Purification
Antibodies
Komagataella phaffii - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/15527
Ver los metadatos del registro completo
id |
INTADig_f4232bcb2991b9a97544fd01086d251f |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/15527 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Development of a platform process for the production and purification of single‐domain antibodiesCrowell, Laura E.Goodwine, ChazSosa Holt, Carla SolangeRocha, Lucía AlejandraVega, Celina GuadalupeRodriguez-Aponte, Sergio A.Dalvie, Neil C.Tracey, Mary KatePuntel, MarianaWigdorovitz, AndresParreño, GladysLove, Kerry R.Cramer, Steven M.Love, J. ChristopherPichia pastorisPurificaciónAnticuerposPurificationAntibodiesKomagataella phaffiiSingle-domain antibodies (sdAbs) offer the affinity and therapeutic value of conventional antibodies, with increased stability and solubility. Unlike conventional antibodies, however, sdAbs do not benefit from a platform manufacturing process. While successful production of a variety of sdAbs has been shown in numerous hosts, purification methods are often molecule specific or require affinity tags, which generally cannot be used in clinical manufacturing due to regulatory concerns. Here, we have developed a broadly applicable production and purification process for sdAbs in Komagataella phaffii (Pichia pastoris) and demonstrated the production of eight different sdAbs at a quality appropriate for nonclinical studies. We developed a two-step, integrated purification process without the use of affinity resins and showed that modification of a single process parameter, pH of the bridging buffer, was required for the successful purification of a variety of sdAbs. Further, we determined that this parameter can be predicted based only on the biophysical characteristics of the target molecule. Using these methods, we produced nonclinical quality sdAbs as few as 5 weeks after identifying the product sequence. Nonclinical studies of three different sdAbs showed that molecules produced using our platform process conferred protection against viral shedding of rotavirus or H1N1 influenza and were equivalent to similar molecules produced in Escherichia coli and purified using affinity tags.Instituto de VirologíaFil: Crowell, Laura E. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Crowell, Laura E. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosFil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados UnidosFil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados UnidosFil: Sosa Holt, Carla Solange. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Rocha, Lucía Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. Department of Biological Engineering; Estados UnidosFil: Dalvie, Neil C. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Dalvie, Neil C. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosFil: Tracey, Mary Kate. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Puntel, Mariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Wigdorovitz, Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Love, Kerry R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Cramer, Steven M. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados UnidosFil: Cramer, Steven M. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados UnidosFil: Love, J. Christopher. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Love, J. Christopher. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosWiley2023-10-11T16:01:58Z2023-10-11T16:01:58Z2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/15527https://onlinelibrary.wiley.com/doi/10.1002/bit.277241097-0290https://doi.org/10.1002/bit.27724Biotechnology and Bioengineering 118 (9) : 3348-3358. (September 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:31:20Zoai:localhost:20.500.12123/15527instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:31:20.298INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Development of a platform process for the production and purification of single‐domain antibodies |
title |
Development of a platform process for the production and purification of single‐domain antibodies |
spellingShingle |
Development of a platform process for the production and purification of single‐domain antibodies Crowell, Laura E. Pichia pastoris Purificación Anticuerpos Purification Antibodies Komagataella phaffii |
title_short |
Development of a platform process for the production and purification of single‐domain antibodies |
title_full |
Development of a platform process for the production and purification of single‐domain antibodies |
title_fullStr |
Development of a platform process for the production and purification of single‐domain antibodies |
title_full_unstemmed |
Development of a platform process for the production and purification of single‐domain antibodies |
title_sort |
Development of a platform process for the production and purification of single‐domain antibodies |
dc.creator.none.fl_str_mv |
Crowell, Laura E. Goodwine, Chaz Sosa Holt, Carla Solange Rocha, Lucía Alejandra Vega, Celina Guadalupe Rodriguez-Aponte, Sergio A. Dalvie, Neil C. Tracey, Mary Kate Puntel, Mariana Wigdorovitz, Andres Parreño, Gladys Love, Kerry R. Cramer, Steven M. Love, J. Christopher |
author |
Crowell, Laura E. |
author_facet |
Crowell, Laura E. Goodwine, Chaz Sosa Holt, Carla Solange Rocha, Lucía Alejandra Vega, Celina Guadalupe Rodriguez-Aponte, Sergio A. Dalvie, Neil C. Tracey, Mary Kate Puntel, Mariana Wigdorovitz, Andres Parreño, Gladys Love, Kerry R. Cramer, Steven M. Love, J. Christopher |
author_role |
author |
author2 |
Goodwine, Chaz Sosa Holt, Carla Solange Rocha, Lucía Alejandra Vega, Celina Guadalupe Rodriguez-Aponte, Sergio A. Dalvie, Neil C. Tracey, Mary Kate Puntel, Mariana Wigdorovitz, Andres Parreño, Gladys Love, Kerry R. Cramer, Steven M. Love, J. Christopher |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Pichia pastoris Purificación Anticuerpos Purification Antibodies Komagataella phaffii |
topic |
Pichia pastoris Purificación Anticuerpos Purification Antibodies Komagataella phaffii |
dc.description.none.fl_txt_mv |
Single-domain antibodies (sdAbs) offer the affinity and therapeutic value of conventional antibodies, with increased stability and solubility. Unlike conventional antibodies, however, sdAbs do not benefit from a platform manufacturing process. While successful production of a variety of sdAbs has been shown in numerous hosts, purification methods are often molecule specific or require affinity tags, which generally cannot be used in clinical manufacturing due to regulatory concerns. Here, we have developed a broadly applicable production and purification process for sdAbs in Komagataella phaffii (Pichia pastoris) and demonstrated the production of eight different sdAbs at a quality appropriate for nonclinical studies. We developed a two-step, integrated purification process without the use of affinity resins and showed that modification of a single process parameter, pH of the bridging buffer, was required for the successful purification of a variety of sdAbs. Further, we determined that this parameter can be predicted based only on the biophysical characteristics of the target molecule. Using these methods, we produced nonclinical quality sdAbs as few as 5 weeks after identifying the product sequence. Nonclinical studies of three different sdAbs showed that molecules produced using our platform process conferred protection against viral shedding of rotavirus or H1N1 influenza and were equivalent to similar molecules produced in Escherichia coli and purified using affinity tags. Instituto de Virología Fil: Crowell, Laura E. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Crowell, Laura E. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos Fil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados Unidos Fil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados Unidos Fil: Sosa Holt, Carla Solange. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina Fil: Rocha, Lucía Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina Fil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. Department of Biological Engineering; Estados Unidos Fil: Dalvie, Neil C. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Dalvie, Neil C. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos Fil: Tracey, Mary Kate. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Puntel, Mariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina Fil: Wigdorovitz, Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina Fil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina Fil: Love, Kerry R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Cramer, Steven M. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados Unidos Fil: Cramer, Steven M. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados Unidos Fil: Love, J. Christopher. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Love, J. Christopher. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos |
description |
Single-domain antibodies (sdAbs) offer the affinity and therapeutic value of conventional antibodies, with increased stability and solubility. Unlike conventional antibodies, however, sdAbs do not benefit from a platform manufacturing process. While successful production of a variety of sdAbs has been shown in numerous hosts, purification methods are often molecule specific or require affinity tags, which generally cannot be used in clinical manufacturing due to regulatory concerns. Here, we have developed a broadly applicable production and purification process for sdAbs in Komagataella phaffii (Pichia pastoris) and demonstrated the production of eight different sdAbs at a quality appropriate for nonclinical studies. We developed a two-step, integrated purification process without the use of affinity resins and showed that modification of a single process parameter, pH of the bridging buffer, was required for the successful purification of a variety of sdAbs. Further, we determined that this parameter can be predicted based only on the biophysical characteristics of the target molecule. Using these methods, we produced nonclinical quality sdAbs as few as 5 weeks after identifying the product sequence. Nonclinical studies of three different sdAbs showed that molecules produced using our platform process conferred protection against viral shedding of rotavirus or H1N1 influenza and were equivalent to similar molecules produced in Escherichia coli and purified using affinity tags. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09 2023-10-11T16:01:58Z 2023-10-11T16:01:58Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/15527 https://onlinelibrary.wiley.com/doi/10.1002/bit.27724 1097-0290 https://doi.org/10.1002/bit.27724 |
url |
http://hdl.handle.net/20.500.12123/15527 https://onlinelibrary.wiley.com/doi/10.1002/bit.27724 https://doi.org/10.1002/bit.27724 |
identifier_str_mv |
1097-0290 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
Biotechnology and Bioengineering 118 (9) : 3348-3358. (September 2021) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846143563933417472 |
score |
12.712165 |