Development of a platform process for the production and purification of single‐domain antibodies

Autores
Crowell, Laura E.; Goodwine, Chaz; Sosa Holt, Carla Solange; Rocha, Lucía Alejandra; Vega, Celina Guadalupe; Rodriguez-Aponte, Sergio A.; Dalvie, Neil C.; Tracey, Mary Kate; Puntel, Mariana; Wigdorovitz, Andres; Parreño, Gladys; Love, Kerry R.; Cramer, Steven M.; Love, J. Christopher
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Single-domain antibodies (sdAbs) offer the affinity and therapeutic value of conventional antibodies, with increased stability and solubility. Unlike conventional antibodies, however, sdAbs do not benefit from a platform manufacturing process. While successful production of a variety of sdAbs has been shown in numerous hosts, purification methods are often molecule specific or require affinity tags, which generally cannot be used in clinical manufacturing due to regulatory concerns. Here, we have developed a broadly applicable production and purification process for sdAbs in Komagataella phaffii (Pichia pastoris) and demonstrated the production of eight different sdAbs at a quality appropriate for nonclinical studies. We developed a two-step, integrated purification process without the use of affinity resins and showed that modification of a single process parameter, pH of the bridging buffer, was required for the successful purification of a variety of sdAbs. Further, we determined that this parameter can be predicted based only on the biophysical characteristics of the target molecule. Using these methods, we produced nonclinical quality sdAbs as few as 5 weeks after identifying the product sequence. Nonclinical studies of three different sdAbs showed that molecules produced using our platform process conferred protection against viral shedding of rotavirus or H1N1 influenza and were equivalent to similar molecules produced in Escherichia coli and purified using affinity tags.
Instituto de Virología
Fil: Crowell, Laura E. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Crowell, Laura E. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados Unidos
Fil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados Unidos
Fil: Sosa Holt, Carla Solange. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Rocha, Lucía Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. Department of Biological Engineering; Estados Unidos
Fil: Dalvie, Neil C. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Dalvie, Neil C. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Tracey, Mary Kate. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Puntel, Mariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Wigdorovitz, Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Love, Kerry R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Cramer, Steven M. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados Unidos
Fil: Cramer, Steven M. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fuente
Biotechnology and Bioengineering 118 (9) : 3348-3358. (September 2021)
Materia
Pichia pastoris
Purificación
Anticuerpos
Purification
Antibodies
Komagataella phaffii
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/15527

id INTADig_f4232bcb2991b9a97544fd01086d251f
oai_identifier_str oai:localhost:20.500.12123/15527
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Development of a platform process for the production and purification of single‐domain antibodiesCrowell, Laura E.Goodwine, ChazSosa Holt, Carla SolangeRocha, Lucía AlejandraVega, Celina GuadalupeRodriguez-Aponte, Sergio A.Dalvie, Neil C.Tracey, Mary KatePuntel, MarianaWigdorovitz, AndresParreño, GladysLove, Kerry R.Cramer, Steven M.Love, J. ChristopherPichia pastorisPurificaciónAnticuerposPurificationAntibodiesKomagataella phaffiiSingle-domain antibodies (sdAbs) offer the affinity and therapeutic value of conventional antibodies, with increased stability and solubility. Unlike conventional antibodies, however, sdAbs do not benefit from a platform manufacturing process. While successful production of a variety of sdAbs has been shown in numerous hosts, purification methods are often molecule specific or require affinity tags, which generally cannot be used in clinical manufacturing due to regulatory concerns. Here, we have developed a broadly applicable production and purification process for sdAbs in Komagataella phaffii (Pichia pastoris) and demonstrated the production of eight different sdAbs at a quality appropriate for nonclinical studies. We developed a two-step, integrated purification process without the use of affinity resins and showed that modification of a single process parameter, pH of the bridging buffer, was required for the successful purification of a variety of sdAbs. Further, we determined that this parameter can be predicted based only on the biophysical characteristics of the target molecule. Using these methods, we produced nonclinical quality sdAbs as few as 5 weeks after identifying the product sequence. Nonclinical studies of three different sdAbs showed that molecules produced using our platform process conferred protection against viral shedding of rotavirus or H1N1 influenza and were equivalent to similar molecules produced in Escherichia coli and purified using affinity tags.Instituto de VirologíaFil: Crowell, Laura E. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Crowell, Laura E. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosFil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados UnidosFil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados UnidosFil: Sosa Holt, Carla Solange. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Rocha, Lucía Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. Department of Biological Engineering; Estados UnidosFil: Dalvie, Neil C. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Dalvie, Neil C. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosFil: Tracey, Mary Kate. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Puntel, Mariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Wigdorovitz, Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Love, Kerry R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Cramer, Steven M. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados UnidosFil: Cramer, Steven M. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados UnidosFil: Love, J. Christopher. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Love, J. Christopher. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosWiley2023-10-11T16:01:58Z2023-10-11T16:01:58Z2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/15527https://onlinelibrary.wiley.com/doi/10.1002/bit.277241097-0290https://doi.org/10.1002/bit.27724Biotechnology and Bioengineering 118 (9) : 3348-3358. (September 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:31:20Zoai:localhost:20.500.12123/15527instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:31:20.298INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Development of a platform process for the production and purification of single‐domain antibodies
title Development of a platform process for the production and purification of single‐domain antibodies
spellingShingle Development of a platform process for the production and purification of single‐domain antibodies
Crowell, Laura E.
Pichia pastoris
Purificación
Anticuerpos
Purification
Antibodies
Komagataella phaffii
title_short Development of a platform process for the production and purification of single‐domain antibodies
title_full Development of a platform process for the production and purification of single‐domain antibodies
title_fullStr Development of a platform process for the production and purification of single‐domain antibodies
title_full_unstemmed Development of a platform process for the production and purification of single‐domain antibodies
title_sort Development of a platform process for the production and purification of single‐domain antibodies
dc.creator.none.fl_str_mv Crowell, Laura E.
Goodwine, Chaz
Sosa Holt, Carla Solange
Rocha, Lucía Alejandra
Vega, Celina Guadalupe
Rodriguez-Aponte, Sergio A.
Dalvie, Neil C.
Tracey, Mary Kate
Puntel, Mariana
Wigdorovitz, Andres
Parreño, Gladys
Love, Kerry R.
Cramer, Steven M.
Love, J. Christopher
author Crowell, Laura E.
author_facet Crowell, Laura E.
Goodwine, Chaz
Sosa Holt, Carla Solange
Rocha, Lucía Alejandra
Vega, Celina Guadalupe
Rodriguez-Aponte, Sergio A.
Dalvie, Neil C.
Tracey, Mary Kate
Puntel, Mariana
Wigdorovitz, Andres
Parreño, Gladys
Love, Kerry R.
Cramer, Steven M.
Love, J. Christopher
author_role author
author2 Goodwine, Chaz
Sosa Holt, Carla Solange
Rocha, Lucía Alejandra
Vega, Celina Guadalupe
Rodriguez-Aponte, Sergio A.
Dalvie, Neil C.
Tracey, Mary Kate
Puntel, Mariana
Wigdorovitz, Andres
Parreño, Gladys
Love, Kerry R.
Cramer, Steven M.
Love, J. Christopher
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Pichia pastoris
Purificación
Anticuerpos
Purification
Antibodies
Komagataella phaffii
topic Pichia pastoris
Purificación
Anticuerpos
Purification
Antibodies
Komagataella phaffii
dc.description.none.fl_txt_mv Single-domain antibodies (sdAbs) offer the affinity and therapeutic value of conventional antibodies, with increased stability and solubility. Unlike conventional antibodies, however, sdAbs do not benefit from a platform manufacturing process. While successful production of a variety of sdAbs has been shown in numerous hosts, purification methods are often molecule specific or require affinity tags, which generally cannot be used in clinical manufacturing due to regulatory concerns. Here, we have developed a broadly applicable production and purification process for sdAbs in Komagataella phaffii (Pichia pastoris) and demonstrated the production of eight different sdAbs at a quality appropriate for nonclinical studies. We developed a two-step, integrated purification process without the use of affinity resins and showed that modification of a single process parameter, pH of the bridging buffer, was required for the successful purification of a variety of sdAbs. Further, we determined that this parameter can be predicted based only on the biophysical characteristics of the target molecule. Using these methods, we produced nonclinical quality sdAbs as few as 5 weeks after identifying the product sequence. Nonclinical studies of three different sdAbs showed that molecules produced using our platform process conferred protection against viral shedding of rotavirus or H1N1 influenza and were equivalent to similar molecules produced in Escherichia coli and purified using affinity tags.
Instituto de Virología
Fil: Crowell, Laura E. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Crowell, Laura E. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados Unidos
Fil: Goodwine, Chaz. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados Unidos
Fil: Sosa Holt, Carla Solange. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Rocha, Lucía Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. Department of Biological Engineering; Estados Unidos
Fil: Dalvie, Neil C. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Dalvie, Neil C. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Tracey, Mary Kate. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Puntel, Mariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Wigdorovitz, Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Love, Kerry R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Cramer, Steven M. Rensselaer Polytechnic Institute. Department of Chemical and Biological Engineering; Estados Unidos
Fil: Cramer, Steven M. Rensselaer Polytechnic Institute. Center for Biotechnology and Interdisciplinary Studies; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
description Single-domain antibodies (sdAbs) offer the affinity and therapeutic value of conventional antibodies, with increased stability and solubility. Unlike conventional antibodies, however, sdAbs do not benefit from a platform manufacturing process. While successful production of a variety of sdAbs has been shown in numerous hosts, purification methods are often molecule specific or require affinity tags, which generally cannot be used in clinical manufacturing due to regulatory concerns. Here, we have developed a broadly applicable production and purification process for sdAbs in Komagataella phaffii (Pichia pastoris) and demonstrated the production of eight different sdAbs at a quality appropriate for nonclinical studies. We developed a two-step, integrated purification process without the use of affinity resins and showed that modification of a single process parameter, pH of the bridging buffer, was required for the successful purification of a variety of sdAbs. Further, we determined that this parameter can be predicted based only on the biophysical characteristics of the target molecule. Using these methods, we produced nonclinical quality sdAbs as few as 5 weeks after identifying the product sequence. Nonclinical studies of three different sdAbs showed that molecules produced using our platform process conferred protection against viral shedding of rotavirus or H1N1 influenza and were equivalent to similar molecules produced in Escherichia coli and purified using affinity tags.
publishDate 2021
dc.date.none.fl_str_mv 2021-09
2023-10-11T16:01:58Z
2023-10-11T16:01:58Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/15527
https://onlinelibrary.wiley.com/doi/10.1002/bit.27724
1097-0290
https://doi.org/10.1002/bit.27724
url http://hdl.handle.net/20.500.12123/15527
https://onlinelibrary.wiley.com/doi/10.1002/bit.27724
https://doi.org/10.1002/bit.27724
identifier_str_mv 1097-0290
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv Biotechnology and Bioengineering 118 (9) : 3348-3358. (September 2021)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143563933417472
score 12.712165