Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables
- Autores
- Alvarez, María Paula; Bellis, Laura Marisa; Arcamone, Julieta Rocio; Silvetti, Luna Emilce; Gavier Pizarro, Gregorio Ignacio
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (CC), diameter breast height (DBH_sum), number of woody individuals (NW) and two first axes of a principal component analysis (PC1 and PC2)) as a measure of forest degradation. To achieve this, first the correlation with two complementary groups of remote sensing derived data (texture metrics over Normalised difference vegetation index and SAR-derived data) was explored. Then, General linear models (GLM) were constructed using the most correlated remote sensing derived variables with forest structure variables as predictor variables. The best estimation was obtained to CC (r2=0.58, rmse=14,5%), followed by DBHsum (r2=0.37, rmse=156.6) and NW (r2=0.22, rmse=14.6), with an spatial arrangement consistent with field observations. Moreover, CC estimation was more accurate than those at regional and global scale, and highlights the importance of developing local models in areas that exhibit high ecological, geological, and human heterogeneity. In addition, other forest variables could also be evaluated, like floristic composition or others associated with functioning. Results offer valuable insights for developing management strategies suitable for each condition, and for future studies regarding the relationship of the mentioned condition and associated natural and anthropic factors.
Instituto de Fisiología y Recursos Genéticos Vegetales
Fil: Alvarez, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Alvarez, María Paula. Universidad Nacional de Córdoba; Argentina
Fil: Alvarez, María Paula. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina.
Fil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bellis, Laura Marisa. Universidad Nacional de Córdoba; Argentina
Fil: Bellis, Laura Marisa. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina.
Fil: Arcamone, Julieta Rocio. Consejo Nacional de Investigaciones Científicas y Tecnológicas; Argentina
Fil: Arcamone, Julieta Rocio. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina
Fil: Silvetti, Luna Emilce. Consejo Nacional de Investigaciones Científicas y Tecnológicas; Argentina
Fil: Silvetti, Luna Emilce. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina
Fil: Gavier Pizarro, Gregorio Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina - Fuente
- Remote Sensing Applications: Society and Environment 37 : 101485. (January 2025)
- Materia
-
Bosques
Bosque Seco
Ecología
Índice Normalizado Diferencial de la Vegetación
Teledetección
Forests
Dry Forests
Ecology
Normalized Difference Vegetation Index
Remote Sensing
NDVI - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/21379
Ver los metadatos del registro completo
| id |
INTADig_ed24f4e06ef1fc7517bb48babf75adc3 |
|---|---|
| oai_identifier_str |
oai:localhost:20.500.12123/21379 |
| network_acronym_str |
INTADig |
| repository_id_str |
l |
| network_name_str |
INTA Digital (INTA) |
| spelling |
Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variablesAlvarez, María PaulaBellis, Laura MarisaArcamone, Julieta RocioSilvetti, Luna EmilceGavier Pizarro, Gregorio IgnacioBosquesBosque SecoEcologíaÍndice Normalizado Diferencial de la VegetaciónTeledetecciónForestsDry ForestsEcologyNormalized Difference Vegetation IndexRemote SensingNDVIThe ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (CC), diameter breast height (DBH_sum), number of woody individuals (NW) and two first axes of a principal component analysis (PC1 and PC2)) as a measure of forest degradation. To achieve this, first the correlation with two complementary groups of remote sensing derived data (texture metrics over Normalised difference vegetation index and SAR-derived data) was explored. Then, General linear models (GLM) were constructed using the most correlated remote sensing derived variables with forest structure variables as predictor variables. The best estimation was obtained to CC (r2=0.58, rmse=14,5%), followed by DBHsum (r2=0.37, rmse=156.6) and NW (r2=0.22, rmse=14.6), with an spatial arrangement consistent with field observations. Moreover, CC estimation was more accurate than those at regional and global scale, and highlights the importance of developing local models in areas that exhibit high ecological, geological, and human heterogeneity. In addition, other forest variables could also be evaluated, like floristic composition or others associated with functioning. Results offer valuable insights for developing management strategies suitable for each condition, and for future studies regarding the relationship of the mentioned condition and associated natural and anthropic factors.Instituto de Fisiología y Recursos Genéticos VegetalesFil: Alvarez, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alvarez, María Paula. Universidad Nacional de Córdoba; ArgentinaFil: Alvarez, María Paula. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina.Fil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bellis, Laura Marisa. Universidad Nacional de Córdoba; ArgentinaFil: Bellis, Laura Marisa. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina.Fil: Arcamone, Julieta Rocio. Consejo Nacional de Investigaciones Científicas y Tecnológicas; ArgentinaFil: Arcamone, Julieta Rocio. Instituto de Altos Estudios Espaciales “Mario Gulich”; ArgentinaFil: Silvetti, Luna Emilce. Consejo Nacional de Investigaciones Científicas y Tecnológicas; ArgentinaFil: Silvetti, Luna Emilce. Instituto de Altos Estudios Espaciales “Mario Gulich”; ArgentinaFil: Gavier Pizarro, Gregorio Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; ArgentinaElsevier2025-02-21T10:23:05Z2025-02-21T10:23:05Z2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/21379https://www.sciencedirect.com/science/article/abs/pii/S23529385250003822352-9385https://doi.org/10.1016/j.rsase.2025.101485Remote Sensing Applications: Society and Environment 37 : 101485. (January 2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-23T11:19:24Zoai:localhost:20.500.12123/21379instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-23 11:19:24.57INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
| dc.title.none.fl_str_mv |
Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables |
| title |
Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables |
| spellingShingle |
Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables Alvarez, María Paula Bosques Bosque Seco Ecología Índice Normalizado Diferencial de la Vegetación Teledetección Forests Dry Forests Ecology Normalized Difference Vegetation Index Remote Sensing NDVI |
| title_short |
Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables |
| title_full |
Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables |
| title_fullStr |
Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables |
| title_full_unstemmed |
Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables |
| title_sort |
Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables |
| dc.creator.none.fl_str_mv |
Alvarez, María Paula Bellis, Laura Marisa Arcamone, Julieta Rocio Silvetti, Luna Emilce Gavier Pizarro, Gregorio Ignacio |
| author |
Alvarez, María Paula |
| author_facet |
Alvarez, María Paula Bellis, Laura Marisa Arcamone, Julieta Rocio Silvetti, Luna Emilce Gavier Pizarro, Gregorio Ignacio |
| author_role |
author |
| author2 |
Bellis, Laura Marisa Arcamone, Julieta Rocio Silvetti, Luna Emilce Gavier Pizarro, Gregorio Ignacio |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Bosques Bosque Seco Ecología Índice Normalizado Diferencial de la Vegetación Teledetección Forests Dry Forests Ecology Normalized Difference Vegetation Index Remote Sensing NDVI |
| topic |
Bosques Bosque Seco Ecología Índice Normalizado Diferencial de la Vegetación Teledetección Forests Dry Forests Ecology Normalized Difference Vegetation Index Remote Sensing NDVI |
| dc.description.none.fl_txt_mv |
The ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (CC), diameter breast height (DBH_sum), number of woody individuals (NW) and two first axes of a principal component analysis (PC1 and PC2)) as a measure of forest degradation. To achieve this, first the correlation with two complementary groups of remote sensing derived data (texture metrics over Normalised difference vegetation index and SAR-derived data) was explored. Then, General linear models (GLM) were constructed using the most correlated remote sensing derived variables with forest structure variables as predictor variables. The best estimation was obtained to CC (r2=0.58, rmse=14,5%), followed by DBHsum (r2=0.37, rmse=156.6) and NW (r2=0.22, rmse=14.6), with an spatial arrangement consistent with field observations. Moreover, CC estimation was more accurate than those at regional and global scale, and highlights the importance of developing local models in areas that exhibit high ecological, geological, and human heterogeneity. In addition, other forest variables could also be evaluated, like floristic composition or others associated with functioning. Results offer valuable insights for developing management strategies suitable for each condition, and for future studies regarding the relationship of the mentioned condition and associated natural and anthropic factors. Instituto de Fisiología y Recursos Genéticos Vegetales Fil: Alvarez, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Alvarez, María Paula. Universidad Nacional de Córdoba; Argentina Fil: Alvarez, María Paula. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina. Fil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bellis, Laura Marisa. Universidad Nacional de Córdoba; Argentina Fil: Bellis, Laura Marisa. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina. Fil: Arcamone, Julieta Rocio. Consejo Nacional de Investigaciones Científicas y Tecnológicas; Argentina Fil: Arcamone, Julieta Rocio. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina Fil: Silvetti, Luna Emilce. Consejo Nacional de Investigaciones Científicas y Tecnológicas; Argentina Fil: Silvetti, Luna Emilce. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina Fil: Gavier Pizarro, Gregorio Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina |
| description |
The ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (CC), diameter breast height (DBH_sum), number of woody individuals (NW) and two first axes of a principal component analysis (PC1 and PC2)) as a measure of forest degradation. To achieve this, first the correlation with two complementary groups of remote sensing derived data (texture metrics over Normalised difference vegetation index and SAR-derived data) was explored. Then, General linear models (GLM) were constructed using the most correlated remote sensing derived variables with forest structure variables as predictor variables. The best estimation was obtained to CC (r2=0.58, rmse=14,5%), followed by DBHsum (r2=0.37, rmse=156.6) and NW (r2=0.22, rmse=14.6), with an spatial arrangement consistent with field observations. Moreover, CC estimation was more accurate than those at regional and global scale, and highlights the importance of developing local models in areas that exhibit high ecological, geological, and human heterogeneity. In addition, other forest variables could also be evaluated, like floristic composition or others associated with functioning. Results offer valuable insights for developing management strategies suitable for each condition, and for future studies regarding the relationship of the mentioned condition and associated natural and anthropic factors. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-02-21T10:23:05Z 2025-02-21T10:23:05Z 2025-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/21379 https://www.sciencedirect.com/science/article/abs/pii/S2352938525000382 2352-9385 https://doi.org/10.1016/j.rsase.2025.101485 |
| url |
http://hdl.handle.net/20.500.12123/21379 https://www.sciencedirect.com/science/article/abs/pii/S2352938525000382 https://doi.org/10.1016/j.rsase.2025.101485 |
| identifier_str_mv |
2352-9385 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
restrictedAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
Remote Sensing Applications: Society and Environment 37 : 101485. (January 2025) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
| reponame_str |
INTA Digital (INTA) |
| collection |
INTA Digital (INTA) |
| instname_str |
Instituto Nacional de Tecnología Agropecuaria |
| repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
| repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
| _version_ |
1846787600563568640 |
| score |
12.982451 |