Spatially variable hidrologic impact and biomass production tradeoffs associated with Eucaliptus ( E. Grandis) cultivation for biofuel production in Entre Ríos, Argentina
- Autores
- Heidari, Azad; Watkins Jr, David; Mayer, Alex; Propato, Tamara Sofia; Veron, Santiago Ramón; De Abelleyra, Diego
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Climate change and energy security promote using renewable sources of energy such as biofuels. High woody biomass production achieved from short-rotation intensive plantations is a strategy that is increasing in many parts of the world. However, broad expansion of bioenergy feedstock production may have significant environmental consequences. This study investigates the watershed-scale hydrological impacts of Eucalyptus (E. grandis) plantations for energy production in a humid subtropical watershed in Entre Rios province, Argentina. A Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, leaf area index (LAI), and biomass production cycles. The model was used to simulate various Eucalyptus plantation scenarios that followed physically based rules for land use conversion (in various extents and locations in the watershed) to study hydrological effects, biomass production, and the green water footprint of energy production. SWAT simulations indicated that the most limiting factor for plant growth was shallow soils causing sea sonal water stress. This resulted in a wide range of biomass productivity throughout the watershed. An optimization algorithm was developed to find the best location for Eucalyptus development regarding highest productivity with least water impact. E. grandis plantations had higher evapotranspiration rates compared to existing terres trial land cover classes; therefore, intensive land use conversion to E. grandis caused a decline in streamflow, with January through March being the most affected months. October was the least-affected month hydrologically, since high rainfall rates over came the canopy interception and higher ET rates of E. grandis in this month. Results indicate that, on average, producing 1 kg of biomass in this region uses 0.8 m3 of water, and the green water footprint of producing 1 m3 fuel is approximately 2150 m3 water, or 57 m3 water per GJ of energy, which is lower than reported values for wood based ethanol, sugar cane ethanol, and soybean biodiesel.
Fil: Heidari, Azad. Michigan Technological University. Department of Civil and Environmental Engineering; Estados Unidos
Fil: Watkins Jr, David. Michigan Technological University. Department of Civil and Environmental Engineering; Estados Unidos
Fil: Mayer, Alex. Michigan Technological University. Department of Civil and Environmental Engineering; Estados Unidos
Fil: Propato, Tamara Sofía. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Verón, Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina - Fuente
- GCB Bioenergy 13 (5) : 823-837 (May 2021)
- Materia
-
Bioenergy
Development
Land Use Change
Water Footprint
Watersheds
Modelling
Bioenergía
Desarrollo
Cambio de Uso de la Tierra
Huella de Agua
Cuencas Hidrográficas
Modelización
Eucalyptus
Cultivation Practices
Energy Water Nexus
Prácticas de Cultivo
Nexo Agua Energía
Entre Ríos, Argentina - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/13162
Ver los metadatos del registro completo
id |
INTADig_eb77df64265d80cf04319f098ca6924e |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/13162 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Spatially variable hidrologic impact and biomass production tradeoffs associated with Eucaliptus ( E. Grandis) cultivation for biofuel production in Entre Ríos, ArgentinaHeidari, AzadWatkins Jr, DavidMayer, AlexPropato, Tamara SofiaVeron, Santiago RamónDe Abelleyra, DiegoBioenergyDevelopmentLand Use ChangeWater FootprintWatershedsModellingBioenergíaDesarrolloCambio de Uso de la TierraHuella de AguaCuencas HidrográficasModelizaciónEucalyptusCultivation PracticesEnergy Water NexusPrácticas de CultivoNexo Agua EnergíaEntre Ríos, ArgentinaClimate change and energy security promote using renewable sources of energy such as biofuels. High woody biomass production achieved from short-rotation intensive plantations is a strategy that is increasing in many parts of the world. However, broad expansion of bioenergy feedstock production may have significant environmental consequences. This study investigates the watershed-scale hydrological impacts of Eucalyptus (E. grandis) plantations for energy production in a humid subtropical watershed in Entre Rios province, Argentina. A Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, leaf area index (LAI), and biomass production cycles. The model was used to simulate various Eucalyptus plantation scenarios that followed physically based rules for land use conversion (in various extents and locations in the watershed) to study hydrological effects, biomass production, and the green water footprint of energy production. SWAT simulations indicated that the most limiting factor for plant growth was shallow soils causing sea sonal water stress. This resulted in a wide range of biomass productivity throughout the watershed. An optimization algorithm was developed to find the best location for Eucalyptus development regarding highest productivity with least water impact. E. grandis plantations had higher evapotranspiration rates compared to existing terres trial land cover classes; therefore, intensive land use conversion to E. grandis caused a decline in streamflow, with January through March being the most affected months. October was the least-affected month hydrologically, since high rainfall rates over came the canopy interception and higher ET rates of E. grandis in this month. Results indicate that, on average, producing 1 kg of biomass in this region uses 0.8 m3 of water, and the green water footprint of producing 1 m3 fuel is approximately 2150 m3 water, or 57 m3 water per GJ of energy, which is lower than reported values for wood based ethanol, sugar cane ethanol, and soybean biodiesel.Fil: Heidari, Azad. Michigan Technological University. Department of Civil and Environmental Engineering; Estados UnidosFil: Watkins Jr, David. Michigan Technological University. Department of Civil and Environmental Engineering; Estados UnidosFil: Mayer, Alex. Michigan Technological University. Department of Civil and Environmental Engineering; Estados UnidosFil: Propato, Tamara Sofía. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Verón, Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaWiley2022-10-20T10:23:53Z2022-10-20T10:23:53Z2021-01-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/13162https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.128151757-1707https://doi.org/10.1111/gcbb.12815GCB Bioenergy 13 (5) : 823-837 (May 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:45Zoai:localhost:20.500.12123/13162instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:45.924INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Spatially variable hidrologic impact and biomass production tradeoffs associated with Eucaliptus ( E. Grandis) cultivation for biofuel production in Entre Ríos, Argentina |
title |
Spatially variable hidrologic impact and biomass production tradeoffs associated with Eucaliptus ( E. Grandis) cultivation for biofuel production in Entre Ríos, Argentina |
spellingShingle |
Spatially variable hidrologic impact and biomass production tradeoffs associated with Eucaliptus ( E. Grandis) cultivation for biofuel production in Entre Ríos, Argentina Heidari, Azad Bioenergy Development Land Use Change Water Footprint Watersheds Modelling Bioenergía Desarrollo Cambio de Uso de la Tierra Huella de Agua Cuencas Hidrográficas Modelización Eucalyptus Cultivation Practices Energy Water Nexus Prácticas de Cultivo Nexo Agua Energía Entre Ríos, Argentina |
title_short |
Spatially variable hidrologic impact and biomass production tradeoffs associated with Eucaliptus ( E. Grandis) cultivation for biofuel production in Entre Ríos, Argentina |
title_full |
Spatially variable hidrologic impact and biomass production tradeoffs associated with Eucaliptus ( E. Grandis) cultivation for biofuel production in Entre Ríos, Argentina |
title_fullStr |
Spatially variable hidrologic impact and biomass production tradeoffs associated with Eucaliptus ( E. Grandis) cultivation for biofuel production in Entre Ríos, Argentina |
title_full_unstemmed |
Spatially variable hidrologic impact and biomass production tradeoffs associated with Eucaliptus ( E. Grandis) cultivation for biofuel production in Entre Ríos, Argentina |
title_sort |
Spatially variable hidrologic impact and biomass production tradeoffs associated with Eucaliptus ( E. Grandis) cultivation for biofuel production in Entre Ríos, Argentina |
dc.creator.none.fl_str_mv |
Heidari, Azad Watkins Jr, David Mayer, Alex Propato, Tamara Sofia Veron, Santiago Ramón De Abelleyra, Diego |
author |
Heidari, Azad |
author_facet |
Heidari, Azad Watkins Jr, David Mayer, Alex Propato, Tamara Sofia Veron, Santiago Ramón De Abelleyra, Diego |
author_role |
author |
author2 |
Watkins Jr, David Mayer, Alex Propato, Tamara Sofia Veron, Santiago Ramón De Abelleyra, Diego |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Bioenergy Development Land Use Change Water Footprint Watersheds Modelling Bioenergía Desarrollo Cambio de Uso de la Tierra Huella de Agua Cuencas Hidrográficas Modelización Eucalyptus Cultivation Practices Energy Water Nexus Prácticas de Cultivo Nexo Agua Energía Entre Ríos, Argentina |
topic |
Bioenergy Development Land Use Change Water Footprint Watersheds Modelling Bioenergía Desarrollo Cambio de Uso de la Tierra Huella de Agua Cuencas Hidrográficas Modelización Eucalyptus Cultivation Practices Energy Water Nexus Prácticas de Cultivo Nexo Agua Energía Entre Ríos, Argentina |
dc.description.none.fl_txt_mv |
Climate change and energy security promote using renewable sources of energy such as biofuels. High woody biomass production achieved from short-rotation intensive plantations is a strategy that is increasing in many parts of the world. However, broad expansion of bioenergy feedstock production may have significant environmental consequences. This study investigates the watershed-scale hydrological impacts of Eucalyptus (E. grandis) plantations for energy production in a humid subtropical watershed in Entre Rios province, Argentina. A Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, leaf area index (LAI), and biomass production cycles. The model was used to simulate various Eucalyptus plantation scenarios that followed physically based rules for land use conversion (in various extents and locations in the watershed) to study hydrological effects, biomass production, and the green water footprint of energy production. SWAT simulations indicated that the most limiting factor for plant growth was shallow soils causing sea sonal water stress. This resulted in a wide range of biomass productivity throughout the watershed. An optimization algorithm was developed to find the best location for Eucalyptus development regarding highest productivity with least water impact. E. grandis plantations had higher evapotranspiration rates compared to existing terres trial land cover classes; therefore, intensive land use conversion to E. grandis caused a decline in streamflow, with January through March being the most affected months. October was the least-affected month hydrologically, since high rainfall rates over came the canopy interception and higher ET rates of E. grandis in this month. Results indicate that, on average, producing 1 kg of biomass in this region uses 0.8 m3 of water, and the green water footprint of producing 1 m3 fuel is approximately 2150 m3 water, or 57 m3 water per GJ of energy, which is lower than reported values for wood based ethanol, sugar cane ethanol, and soybean biodiesel. Fil: Heidari, Azad. Michigan Technological University. Department of Civil and Environmental Engineering; Estados Unidos Fil: Watkins Jr, David. Michigan Technological University. Department of Civil and Environmental Engineering; Estados Unidos Fil: Mayer, Alex. Michigan Technological University. Department of Civil and Environmental Engineering; Estados Unidos Fil: Propato, Tamara Sofía. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Verón, Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: de Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina |
description |
Climate change and energy security promote using renewable sources of energy such as biofuels. High woody biomass production achieved from short-rotation intensive plantations is a strategy that is increasing in many parts of the world. However, broad expansion of bioenergy feedstock production may have significant environmental consequences. This study investigates the watershed-scale hydrological impacts of Eucalyptus (E. grandis) plantations for energy production in a humid subtropical watershed in Entre Rios province, Argentina. A Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, leaf area index (LAI), and biomass production cycles. The model was used to simulate various Eucalyptus plantation scenarios that followed physically based rules for land use conversion (in various extents and locations in the watershed) to study hydrological effects, biomass production, and the green water footprint of energy production. SWAT simulations indicated that the most limiting factor for plant growth was shallow soils causing sea sonal water stress. This resulted in a wide range of biomass productivity throughout the watershed. An optimization algorithm was developed to find the best location for Eucalyptus development regarding highest productivity with least water impact. E. grandis plantations had higher evapotranspiration rates compared to existing terres trial land cover classes; therefore, intensive land use conversion to E. grandis caused a decline in streamflow, with January through March being the most affected months. October was the least-affected month hydrologically, since high rainfall rates over came the canopy interception and higher ET rates of E. grandis in this month. Results indicate that, on average, producing 1 kg of biomass in this region uses 0.8 m3 of water, and the green water footprint of producing 1 m3 fuel is approximately 2150 m3 water, or 57 m3 water per GJ of energy, which is lower than reported values for wood based ethanol, sugar cane ethanol, and soybean biodiesel. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-11 2022-10-20T10:23:53Z 2022-10-20T10:23:53Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/13162 https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12815 1757-1707 https://doi.org/10.1111/gcbb.12815 |
url |
http://hdl.handle.net/20.500.12123/13162 https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12815 https://doi.org/10.1111/gcbb.12815 |
identifier_str_mv |
1757-1707 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
GCB Bioenergy 13 (5) : 823-837 (May 2021) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619170493235200 |
score |
12.559606 |