Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries

Autores
Congio, Guilhermo F.S.; Bannink, André; Mayorga, Olga L.; Rodrigues, João P. P.; Bougouin, Adeline; Kebreab, Ermias; Carvalho, Paulo C.F.; Berchielli, Telma T.; Mercadante, Maria E.Z.; Valadares-Filho, Sebastião C.; Borges, Ana L. C.C.; Berndt, Alexandre; Rodrigues, Paulo H.M.; Ku-Vera, Juan C.; Molina-Botero, Isabel C.; Arango, Jacobo; Reis, Ricardo A.; Posada-Ochoa, Sandra L.; Tomich, Thierry R.; Castelán-Ortega, Octavio A.; Marcondes, Marcos I.; Gómez, Carlos; Ribeiro-Filho, Henrique M.N.; Gere, José Ignacio; Ariza-Nieto, Claudia; Giraldo, Luis A.; Gonda, Horacio; Ceron Cucchi, Maria Esperanza; Hernandez, Olegario; Ricci, Patricia; Hristov, Alexander N.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.
Instituto de Patobiología
Fil: Congio, Guilhermo F. S. University of São Paulo. Luiz de Queiroz College of Agriculture. Department of Animal Science; Brasil
Fil: Bannink, André. Wageningen University & Research. Wageningen Livestock Research; Países Bajos
Fil: Mayorga, Olga L. Colombian Corporation for Agricultural Research; Colombia
Fil: Rodrigues, João P. P. Federal Rural University of Rio de Janeiro. Department of Animal Production. Animal Science Institute; Brasil
Fil: Bougouin, Adeline. University of California. Department of Animal Science; Estados Unidos
Fil: Kebreab, Ermias. University of California. Department of Animal Science; Estados Unidos
Fil: Carvalho, Paulo C. F. Federal University of Rio Grande do Sul. Department of Forage Plants and Agrometeorology; Brasil
Fil: Berchielli, Telma T. São Paulo State University. Department of Animal Science; Brasil
Fil: Mercadante, Maria E. Z. São Paulo Agribusiness Technology Agency. Institute of Animal Science; Brasil
Fil: Valadares-Filho, Sebastião C. Federal University of Viçosa. Department of Animal Science; Brasil
Fil: Borges, Ana L. C. C. Federal University of Minas Gerais. Department of Animal Science; Brasil
Fil: Berndt, Alexandre. Embrapa Southeast Livestock. Brazilian Agricultural Research Corporation; Brasil
Fil: Rodrigues, Paulo H. M. University of São Paulo. Faculty of Veterinary Medicine and Animal Science. Department of Animal Nutrition and Production; Brasil
Fil: Ku-Vera, Juan C. University of Yucatan. Faculty of Veterinary Medicine and Animal Science. Department of Animal Nutrition; México
Fil: Molina-Botero, Isabel C. National Agrarian University La Molina. Faculty of Animal Science. Department of Animal Husbandry; Perú
Fil: Arango, Jacobo. International Center for Tropical Agriculture; Colombia
Fil: Reis, Ricardo A. São Paulo State University. Department of Animal Science; Brasil
Fil: Posada-Ochoa, Sandra L. University of Antioquia. Faculty of Agricultural Sciences; Colombia
Fil: Tomich, Thierry R. Embrapa Dairy Cattle. Brazilian Agricultural Research Corporation; Brasil
Fil: Castelán-Ortega, Octavio A. Autonomous University of the State of Mexico. Faculty of Veterinary Medicine and Animal Science; México
Fil: Marcondes, Marcos I. Washington State University. Department of Animal Sciences; Estados Unidos
Fil: Gómez, Carlos. National Agrarian University La Molina. Faculty of Animal Science. Department of Animal Husbandry; Perú
Fil: Ribeiro-Filho, Henrique M. N. Santa Catarina State University. Department of Animal and Food Science; Brasil
Fil: Gere, Jose Ignacio. Universidad Tecnológica Nacional. División de Investigación y Desarrollo de Ingeniería; Argentina
Fil: Gere, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ariza-Nieto, Claudia. Colombian Corporation for Agricultural Research; Colombia
Fil: Giraldo, Luis A. National University of Colombia. Faculty of Agricultural Sciences. Department of Animal Production; Colombia
Fil: Gonda, Horacio. Swedish University of Agricultural Sciences. Faculty of Veterinary Medicine and Animal Science. Department of Animal Nutrition and Management; Suecia
Fil: Ceron Cucchi, Maria Esperanza. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiologia; Argentina
Fil: Ceron Cucchi, Maria Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hernandez, Olegario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; Argentina
Fil: Ricci, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ricci, Patricia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Hristov, Alexander N. The Pennsylvania State University. Department of Animal Science; Estados Unidos
Fuente
Science of the Total Environment 856 (2) : 159128 (Enero 2023)
Materia
Nutrients
Gases de Efecto Invernadero
Análisis de la Regresión
Ganado de Carne
América Latina y el Caribe
Nutrientes
Greenhouse Gases
Regression Analysis
Beef Cattle
Methane Emission
Latin America and the Caribbean
Emisiones de Metano
Model Cross Validation
Validación Cruzada del Modelo
Nivel de accesibilidad
acceso restringido
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/16550

id INTADig_ea4f088c5dcb8b64b2e795ed8089669b
oai_identifier_str oai:localhost:20.500.12123/16550
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countriesCongio, Guilhermo F.S.Bannink, AndréMayorga, Olga L.Rodrigues, João P. P.Bougouin, AdelineKebreab, ErmiasCarvalho, Paulo C.F.Berchielli, Telma T.Mercadante, Maria E.Z.Valadares-Filho, Sebastião C.Borges, Ana L. C.C.Berndt, AlexandreRodrigues, Paulo H.M.Ku-Vera, Juan C.Molina-Botero, Isabel C.Arango, JacoboReis, Ricardo A.Posada-Ochoa, Sandra L.Tomich, Thierry R.Castelán-Ortega, Octavio A.Marcondes, Marcos I.Gómez, CarlosRibeiro-Filho, Henrique M.N.Gere, José IgnacioAriza-Nieto, ClaudiaGiraldo, Luis A.Gonda, HoracioCeron Cucchi, Maria EsperanzaHernandez, OlegarioRicci, PatriciaHristov, Alexander N.NutrientsGases de Efecto InvernaderoAnálisis de la RegresiónGanado de CarneAmérica Latina y el CaribeNutrientesGreenhouse GasesRegression AnalysisBeef CattleMethane EmissionLatin America and the CaribbeanEmisiones de MetanoModel Cross ValidationValidación Cruzada del ModeloOn-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.Instituto de PatobiologíaFil: Congio, Guilhermo F. S. University of São Paulo. Luiz de Queiroz College of Agriculture. Department of Animal Science; BrasilFil: Bannink, André. Wageningen University & Research. Wageningen Livestock Research; Países BajosFil: Mayorga, Olga L. Colombian Corporation for Agricultural Research; ColombiaFil: Rodrigues, João P. P. Federal Rural University of Rio de Janeiro. Department of Animal Production. Animal Science Institute; BrasilFil: Bougouin, Adeline. University of California. Department of Animal Science; Estados UnidosFil: Kebreab, Ermias. University of California. Department of Animal Science; Estados UnidosFil: Carvalho, Paulo C. F. Federal University of Rio Grande do Sul. Department of Forage Plants and Agrometeorology; BrasilFil: Berchielli, Telma T. São Paulo State University. Department of Animal Science; BrasilFil: Mercadante, Maria E. Z. São Paulo Agribusiness Technology Agency. Institute of Animal Science; BrasilFil: Valadares-Filho, Sebastião C. Federal University of Viçosa. Department of Animal Science; BrasilFil: Borges, Ana L. C. C. Federal University of Minas Gerais. Department of Animal Science; BrasilFil: Berndt, Alexandre. Embrapa Southeast Livestock. Brazilian Agricultural Research Corporation; BrasilFil: Rodrigues, Paulo H. M. University of São Paulo. Faculty of Veterinary Medicine and Animal Science. Department of Animal Nutrition and Production; BrasilFil: Ku-Vera, Juan C. University of Yucatan. Faculty of Veterinary Medicine and Animal Science. Department of Animal Nutrition; MéxicoFil: Molina-Botero, Isabel C. National Agrarian University La Molina. Faculty of Animal Science. Department of Animal Husbandry; PerúFil: Arango, Jacobo. International Center for Tropical Agriculture; ColombiaFil: Reis, Ricardo A. São Paulo State University. Department of Animal Science; BrasilFil: Posada-Ochoa, Sandra L. University of Antioquia. Faculty of Agricultural Sciences; ColombiaFil: Tomich, Thierry R. Embrapa Dairy Cattle. Brazilian Agricultural Research Corporation; BrasilFil: Castelán-Ortega, Octavio A. Autonomous University of the State of Mexico. Faculty of Veterinary Medicine and Animal Science; MéxicoFil: Marcondes, Marcos I. Washington State University. Department of Animal Sciences; Estados UnidosFil: Gómez, Carlos. National Agrarian University La Molina. Faculty of Animal Science. Department of Animal Husbandry; PerúFil: Ribeiro-Filho, Henrique M. N. Santa Catarina State University. Department of Animal and Food Science; BrasilFil: Gere, Jose Ignacio. Universidad Tecnológica Nacional. División de Investigación y Desarrollo de Ingeniería; ArgentinaFil: Gere, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ariza-Nieto, Claudia. Colombian Corporation for Agricultural Research; ColombiaFil: Giraldo, Luis A. National University of Colombia. Faculty of Agricultural Sciences. Department of Animal Production; ColombiaFil: Gonda, Horacio. Swedish University of Agricultural Sciences. Faculty of Veterinary Medicine and Animal Science. Department of Animal Nutrition and Management; SueciaFil: Ceron Cucchi, Maria Esperanza. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiologia; ArgentinaFil: Ceron Cucchi, Maria Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hernandez, Olegario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; ArgentinaFil: Ricci, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ricci, Patricia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Hristov, Alexander N. The Pennsylvania State University. Department of Animal Science; Estados UnidosElsevier2024-01-12T16:19:52Z2024-01-12T16:19:52Z2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/16550https://www.sciencedirect.com/science/article/pii/S00489697220622711879-1026https://doi.org/10.1016/j.scitotenv.2022.159128Science of the Total Environment 856 (2) : 159128 (Enero 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:46:19Zoai:localhost:20.500.12123/16550instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:46:19.593INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
title Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
spellingShingle Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
Congio, Guilhermo F.S.
Nutrients
Gases de Efecto Invernadero
Análisis de la Regresión
Ganado de Carne
América Latina y el Caribe
Nutrientes
Greenhouse Gases
Regression Analysis
Beef Cattle
Methane Emission
Latin America and the Caribbean
Emisiones de Metano
Model Cross Validation
Validación Cruzada del Modelo
title_short Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
title_full Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
title_fullStr Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
title_full_unstemmed Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
title_sort Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
dc.creator.none.fl_str_mv Congio, Guilhermo F.S.
Bannink, André
Mayorga, Olga L.
Rodrigues, João P. P.
Bougouin, Adeline
Kebreab, Ermias
Carvalho, Paulo C.F.
Berchielli, Telma T.
Mercadante, Maria E.Z.
Valadares-Filho, Sebastião C.
Borges, Ana L. C.C.
Berndt, Alexandre
Rodrigues, Paulo H.M.
Ku-Vera, Juan C.
Molina-Botero, Isabel C.
Arango, Jacobo
Reis, Ricardo A.
Posada-Ochoa, Sandra L.
Tomich, Thierry R.
Castelán-Ortega, Octavio A.
Marcondes, Marcos I.
Gómez, Carlos
Ribeiro-Filho, Henrique M.N.
Gere, José Ignacio
Ariza-Nieto, Claudia
Giraldo, Luis A.
Gonda, Horacio
Ceron Cucchi, Maria Esperanza
Hernandez, Olegario
Ricci, Patricia
Hristov, Alexander N.
author Congio, Guilhermo F.S.
author_facet Congio, Guilhermo F.S.
Bannink, André
Mayorga, Olga L.
Rodrigues, João P. P.
Bougouin, Adeline
Kebreab, Ermias
Carvalho, Paulo C.F.
Berchielli, Telma T.
Mercadante, Maria E.Z.
Valadares-Filho, Sebastião C.
Borges, Ana L. C.C.
Berndt, Alexandre
Rodrigues, Paulo H.M.
Ku-Vera, Juan C.
Molina-Botero, Isabel C.
Arango, Jacobo
Reis, Ricardo A.
Posada-Ochoa, Sandra L.
Tomich, Thierry R.
Castelán-Ortega, Octavio A.
Marcondes, Marcos I.
Gómez, Carlos
Ribeiro-Filho, Henrique M.N.
Gere, José Ignacio
Ariza-Nieto, Claudia
Giraldo, Luis A.
Gonda, Horacio
Ceron Cucchi, Maria Esperanza
Hernandez, Olegario
Ricci, Patricia
Hristov, Alexander N.
author_role author
author2 Bannink, André
Mayorga, Olga L.
Rodrigues, João P. P.
Bougouin, Adeline
Kebreab, Ermias
Carvalho, Paulo C.F.
Berchielli, Telma T.
Mercadante, Maria E.Z.
Valadares-Filho, Sebastião C.
Borges, Ana L. C.C.
Berndt, Alexandre
Rodrigues, Paulo H.M.
Ku-Vera, Juan C.
Molina-Botero, Isabel C.
Arango, Jacobo
Reis, Ricardo A.
Posada-Ochoa, Sandra L.
Tomich, Thierry R.
Castelán-Ortega, Octavio A.
Marcondes, Marcos I.
Gómez, Carlos
Ribeiro-Filho, Henrique M.N.
Gere, José Ignacio
Ariza-Nieto, Claudia
Giraldo, Luis A.
Gonda, Horacio
Ceron Cucchi, Maria Esperanza
Hernandez, Olegario
Ricci, Patricia
Hristov, Alexander N.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Nutrients
Gases de Efecto Invernadero
Análisis de la Regresión
Ganado de Carne
América Latina y el Caribe
Nutrientes
Greenhouse Gases
Regression Analysis
Beef Cattle
Methane Emission
Latin America and the Caribbean
Emisiones de Metano
Model Cross Validation
Validación Cruzada del Modelo
topic Nutrients
Gases de Efecto Invernadero
Análisis de la Regresión
Ganado de Carne
América Latina y el Caribe
Nutrientes
Greenhouse Gases
Regression Analysis
Beef Cattle
Methane Emission
Latin America and the Caribbean
Emisiones de Metano
Model Cross Validation
Validación Cruzada del Modelo
dc.description.none.fl_txt_mv On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.
Instituto de Patobiología
Fil: Congio, Guilhermo F. S. University of São Paulo. Luiz de Queiroz College of Agriculture. Department of Animal Science; Brasil
Fil: Bannink, André. Wageningen University & Research. Wageningen Livestock Research; Países Bajos
Fil: Mayorga, Olga L. Colombian Corporation for Agricultural Research; Colombia
Fil: Rodrigues, João P. P. Federal Rural University of Rio de Janeiro. Department of Animal Production. Animal Science Institute; Brasil
Fil: Bougouin, Adeline. University of California. Department of Animal Science; Estados Unidos
Fil: Kebreab, Ermias. University of California. Department of Animal Science; Estados Unidos
Fil: Carvalho, Paulo C. F. Federal University of Rio Grande do Sul. Department of Forage Plants and Agrometeorology; Brasil
Fil: Berchielli, Telma T. São Paulo State University. Department of Animal Science; Brasil
Fil: Mercadante, Maria E. Z. São Paulo Agribusiness Technology Agency. Institute of Animal Science; Brasil
Fil: Valadares-Filho, Sebastião C. Federal University of Viçosa. Department of Animal Science; Brasil
Fil: Borges, Ana L. C. C. Federal University of Minas Gerais. Department of Animal Science; Brasil
Fil: Berndt, Alexandre. Embrapa Southeast Livestock. Brazilian Agricultural Research Corporation; Brasil
Fil: Rodrigues, Paulo H. M. University of São Paulo. Faculty of Veterinary Medicine and Animal Science. Department of Animal Nutrition and Production; Brasil
Fil: Ku-Vera, Juan C. University of Yucatan. Faculty of Veterinary Medicine and Animal Science. Department of Animal Nutrition; México
Fil: Molina-Botero, Isabel C. National Agrarian University La Molina. Faculty of Animal Science. Department of Animal Husbandry; Perú
Fil: Arango, Jacobo. International Center for Tropical Agriculture; Colombia
Fil: Reis, Ricardo A. São Paulo State University. Department of Animal Science; Brasil
Fil: Posada-Ochoa, Sandra L. University of Antioquia. Faculty of Agricultural Sciences; Colombia
Fil: Tomich, Thierry R. Embrapa Dairy Cattle. Brazilian Agricultural Research Corporation; Brasil
Fil: Castelán-Ortega, Octavio A. Autonomous University of the State of Mexico. Faculty of Veterinary Medicine and Animal Science; México
Fil: Marcondes, Marcos I. Washington State University. Department of Animal Sciences; Estados Unidos
Fil: Gómez, Carlos. National Agrarian University La Molina. Faculty of Animal Science. Department of Animal Husbandry; Perú
Fil: Ribeiro-Filho, Henrique M. N. Santa Catarina State University. Department of Animal and Food Science; Brasil
Fil: Gere, Jose Ignacio. Universidad Tecnológica Nacional. División de Investigación y Desarrollo de Ingeniería; Argentina
Fil: Gere, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ariza-Nieto, Claudia. Colombian Corporation for Agricultural Research; Colombia
Fil: Giraldo, Luis A. National University of Colombia. Faculty of Agricultural Sciences. Department of Animal Production; Colombia
Fil: Gonda, Horacio. Swedish University of Agricultural Sciences. Faculty of Veterinary Medicine and Animal Science. Department of Animal Nutrition and Management; Suecia
Fil: Ceron Cucchi, Maria Esperanza. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiologia; Argentina
Fil: Ceron Cucchi, Maria Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hernandez, Olegario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; Argentina
Fil: Ricci, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ricci, Patricia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Hristov, Alexander N. The Pennsylvania State University. Department of Animal Science; Estados Unidos
description On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.
publishDate 2023
dc.date.none.fl_str_mv 2023-01
2024-01-12T16:19:52Z
2024-01-12T16:19:52Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/16550
https://www.sciencedirect.com/science/article/pii/S0048969722062271
1879-1026
https://doi.org/10.1016/j.scitotenv.2022.159128
url http://hdl.handle.net/20.500.12123/16550
https://www.sciencedirect.com/science/article/pii/S0048969722062271
https://doi.org/10.1016/j.scitotenv.2022.159128
identifier_str_mv 1879-1026
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Science of the Total Environment 856 (2) : 159128 (Enero 2023)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619184032448512
score 12.559606