Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries

Autores
Congio, Guilhermo F.S.; Bannink, André; Mayorga, Olga L.; Rodrigues, João P.P.; Bougouin, Adeline; Kebreab, Ermias; Carvalho, Paulo C.F.; Berchielli, Telma T.; Mercadante, Maria E.Z.; Valadares-Filho, Sebastião C.; Borges, Ana L.C.C.; Berndt, Alexandre; Rodrigues, Paulo H.M.; Ku Vera, Juan C.; Molina Botero, Isabel C.; Arango, Jacobo; Reis, Ricardo A.; Posada Ochoa, Sandra L.; Tomich, Thierry R.; Castelán Ortega, Octavio A.; Marcondes, Marcos I.; Gómez, Carlos; Ribeiro Filho, Henrique M.N.; Gere, José Ignacio; Ariza-Nieto, Claudia; Giraldo, Luis A.; Gonda, Horacio Leandro; Cerón Cucchi, María Esperanza; Hernández, Olegario; Ricci, Patricia; Hristov, Alexander N.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.
Fil: Congio, Guilhermo F.S.. Universidade de Sao Paulo; Brasil
Fil: Bannink, André. University of Agriculture Wageningen; Países Bajos
Fil: Mayorga, Olga L.. Corporación Colombiana de Investigación Agropecuaria; Colombia
Fil: Rodrigues, João P.P.. Universidade Federal Rural do Rio de Janeiro; Brasil
Fil: Bougouin, Adeline. University of California at Davis; Estados Unidos
Fil: Kebreab, Ermias. University of California at Davis; Estados Unidos
Fil: Carvalho, Paulo C.F.. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Berchielli, Telma T.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil
Fil: Mercadante, Maria E.Z.. São Paulo Agribusiness Technology Agency; Brasil
Fil: Valadares-Filho, Sebastião C.. Universidade Federal de Viçosa; Brasil
Fil: Borges, Ana L.C.C.. Universidade Federal de Minas Gerais; Brasil
Fil: Berndt, Alexandre. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Rodrigues, Paulo H.M.. Universidade de Sao Paulo; Brasil
Fil: Ku Vera, Juan C.. Universidad Autonoma de Yucatan (uady);
Fil: Molina Botero, Isabel C.. Universidad Nacional Agraria La Molina; Perú
Fil: Arango, Jacobo. Centro Internacional de Agricultura Tropical; Colombia
Fil: Reis, Ricardo A.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil
Fil: Posada Ochoa, Sandra L.. Universidad de Antioquia; Colombia
Fil: Tomich, Thierry R.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Castelán Ortega, Octavio A.. Universidad Autónoma del Estado de México; México
Fil: Marcondes, Marcos I.. Washington State University; Estados Unidos
Fil: Gómez, Carlos. Universidad Nacional Agraria La Molina; Perú
Fil: Ribeiro Filho, Henrique M.N.. Universidade Do Estado de Santa Catarina; Brasil
Fil: Gere, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina
Fil: Ariza-Nieto, Claudia. Corporación Colombiana de Investigación Agropecuaria; Colombia
Fil: Giraldo, Luis A.. Universidad Nacional de Colombia; Colombia
Fil: Gonda, Horacio Leandro. Sveriges Lantbruksuniversitet (slu);
Fil: Cerón Cucchi, María Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
Fil: Hernández, Olegario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
Fil: Ricci, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
Fil: Hristov, Alexander N.. State University of Pennsylvania; Estados Unidos
Materia
DIETARY NUTRIENTS
GREENHOUSE GAS
LINEAR REGRESSION
LIVESTOCK
METHANE CONVERSION FACTOR
MODEL CROSS-VALIDATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/219812

id CONICETDig_0188a8a65046d2709a2c6f2624544e78
oai_identifier_str oai:ri.conicet.gov.ar:11336/219812
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countriesCongio, Guilhermo F.S.Bannink, AndréMayorga, Olga L.Rodrigues, João P.P.Bougouin, AdelineKebreab, ErmiasCarvalho, Paulo C.F.Berchielli, Telma T.Mercadante, Maria E.Z.Valadares-Filho, Sebastião C.Borges, Ana L.C.C.Berndt, AlexandreRodrigues, Paulo H.M.Ku Vera, Juan C.Molina Botero, Isabel C.Arango, JacoboReis, Ricardo A.Posada Ochoa, Sandra L.Tomich, Thierry R.Castelán Ortega, Octavio A.Marcondes, Marcos I.Gómez, CarlosRibeiro Filho, Henrique M.N.Gere, José IgnacioAriza-Nieto, ClaudiaGiraldo, Luis A.Gonda, Horacio LeandroCerón Cucchi, María EsperanzaHernández, OlegarioRicci, PatriciaHristov, Alexander N.DIETARY NUTRIENTSGREENHOUSE GASLINEAR REGRESSIONLIVESTOCKMETHANE CONVERSION FACTORMODEL CROSS-VALIDATIONhttps://purl.org/becyt/ford/4.2https://purl.org/becyt/ford/4On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.Fil: Congio, Guilhermo F.S.. Universidade de Sao Paulo; BrasilFil: Bannink, André. University of Agriculture Wageningen; Países BajosFil: Mayorga, Olga L.. Corporación Colombiana de Investigación Agropecuaria; ColombiaFil: Rodrigues, João P.P.. Universidade Federal Rural do Rio de Janeiro; BrasilFil: Bougouin, Adeline. University of California at Davis; Estados UnidosFil: Kebreab, Ermias. University of California at Davis; Estados UnidosFil: Carvalho, Paulo C.F.. Universidade Federal do Rio Grande do Sul; BrasilFil: Berchielli, Telma T.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Mercadante, Maria E.Z.. São Paulo Agribusiness Technology Agency; BrasilFil: Valadares-Filho, Sebastião C.. Universidade Federal de Viçosa; BrasilFil: Borges, Ana L.C.C.. Universidade Federal de Minas Gerais; BrasilFil: Berndt, Alexandre. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Rodrigues, Paulo H.M.. Universidade de Sao Paulo; BrasilFil: Ku Vera, Juan C.. Universidad Autonoma de Yucatan (uady);Fil: Molina Botero, Isabel C.. Universidad Nacional Agraria La Molina; PerúFil: Arango, Jacobo. Centro Internacional de Agricultura Tropical; ColombiaFil: Reis, Ricardo A.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Posada Ochoa, Sandra L.. Universidad de Antioquia; ColombiaFil: Tomich, Thierry R.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Castelán Ortega, Octavio A.. Universidad Autónoma del Estado de México; MéxicoFil: Marcondes, Marcos I.. Washington State University; Estados UnidosFil: Gómez, Carlos. Universidad Nacional Agraria La Molina; PerúFil: Ribeiro Filho, Henrique M.N.. Universidade Do Estado de Santa Catarina; BrasilFil: Gere, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Ariza-Nieto, Claudia. Corporación Colombiana de Investigación Agropecuaria; ColombiaFil: Giraldo, Luis A.. Universidad Nacional de Colombia; ColombiaFil: Gonda, Horacio Leandro. Sveriges Lantbruksuniversitet (slu);Fil: Cerón Cucchi, María Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; ArgentinaFil: Hernández, Olegario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; ArgentinaFil: Ricci, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; ArgentinaFil: Hristov, Alexander N.. State University of Pennsylvania; Estados UnidosElsevier2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219812Congio, Guilhermo F.S.; Bannink, André; Mayorga, Olga L.; Rodrigues, João P.P.; Bougouin, Adeline; et al.; Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries; Elsevier; Science of the Total Environment; 856; 159128; 1-2023; 1-100048-9697CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2022.159128info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0048969722062271info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:52Zoai:ri.conicet.gov.ar:11336/219812instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:53.239CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
title Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
spellingShingle Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
Congio, Guilhermo F.S.
DIETARY NUTRIENTS
GREENHOUSE GAS
LINEAR REGRESSION
LIVESTOCK
METHANE CONVERSION FACTOR
MODEL CROSS-VALIDATION
title_short Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
title_full Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
title_fullStr Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
title_full_unstemmed Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
title_sort Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
dc.creator.none.fl_str_mv Congio, Guilhermo F.S.
Bannink, André
Mayorga, Olga L.
Rodrigues, João P.P.
Bougouin, Adeline
Kebreab, Ermias
Carvalho, Paulo C.F.
Berchielli, Telma T.
Mercadante, Maria E.Z.
Valadares-Filho, Sebastião C.
Borges, Ana L.C.C.
Berndt, Alexandre
Rodrigues, Paulo H.M.
Ku Vera, Juan C.
Molina Botero, Isabel C.
Arango, Jacobo
Reis, Ricardo A.
Posada Ochoa, Sandra L.
Tomich, Thierry R.
Castelán Ortega, Octavio A.
Marcondes, Marcos I.
Gómez, Carlos
Ribeiro Filho, Henrique M.N.
Gere, José Ignacio
Ariza-Nieto, Claudia
Giraldo, Luis A.
Gonda, Horacio Leandro
Cerón Cucchi, María Esperanza
Hernández, Olegario
Ricci, Patricia
Hristov, Alexander N.
author Congio, Guilhermo F.S.
author_facet Congio, Guilhermo F.S.
Bannink, André
Mayorga, Olga L.
Rodrigues, João P.P.
Bougouin, Adeline
Kebreab, Ermias
Carvalho, Paulo C.F.
Berchielli, Telma T.
Mercadante, Maria E.Z.
Valadares-Filho, Sebastião C.
Borges, Ana L.C.C.
Berndt, Alexandre
Rodrigues, Paulo H.M.
Ku Vera, Juan C.
Molina Botero, Isabel C.
Arango, Jacobo
Reis, Ricardo A.
Posada Ochoa, Sandra L.
Tomich, Thierry R.
Castelán Ortega, Octavio A.
Marcondes, Marcos I.
Gómez, Carlos
Ribeiro Filho, Henrique M.N.
Gere, José Ignacio
Ariza-Nieto, Claudia
Giraldo, Luis A.
Gonda, Horacio Leandro
Cerón Cucchi, María Esperanza
Hernández, Olegario
Ricci, Patricia
Hristov, Alexander N.
author_role author
author2 Bannink, André
Mayorga, Olga L.
Rodrigues, João P.P.
Bougouin, Adeline
Kebreab, Ermias
Carvalho, Paulo C.F.
Berchielli, Telma T.
Mercadante, Maria E.Z.
Valadares-Filho, Sebastião C.
Borges, Ana L.C.C.
Berndt, Alexandre
Rodrigues, Paulo H.M.
Ku Vera, Juan C.
Molina Botero, Isabel C.
Arango, Jacobo
Reis, Ricardo A.
Posada Ochoa, Sandra L.
Tomich, Thierry R.
Castelán Ortega, Octavio A.
Marcondes, Marcos I.
Gómez, Carlos
Ribeiro Filho, Henrique M.N.
Gere, José Ignacio
Ariza-Nieto, Claudia
Giraldo, Luis A.
Gonda, Horacio Leandro
Cerón Cucchi, María Esperanza
Hernández, Olegario
Ricci, Patricia
Hristov, Alexander N.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv DIETARY NUTRIENTS
GREENHOUSE GAS
LINEAR REGRESSION
LIVESTOCK
METHANE CONVERSION FACTOR
MODEL CROSS-VALIDATION
topic DIETARY NUTRIENTS
GREENHOUSE GAS
LINEAR REGRESSION
LIVESTOCK
METHANE CONVERSION FACTOR
MODEL CROSS-VALIDATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.2
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.
Fil: Congio, Guilhermo F.S.. Universidade de Sao Paulo; Brasil
Fil: Bannink, André. University of Agriculture Wageningen; Países Bajos
Fil: Mayorga, Olga L.. Corporación Colombiana de Investigación Agropecuaria; Colombia
Fil: Rodrigues, João P.P.. Universidade Federal Rural do Rio de Janeiro; Brasil
Fil: Bougouin, Adeline. University of California at Davis; Estados Unidos
Fil: Kebreab, Ermias. University of California at Davis; Estados Unidos
Fil: Carvalho, Paulo C.F.. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Berchielli, Telma T.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil
Fil: Mercadante, Maria E.Z.. São Paulo Agribusiness Technology Agency; Brasil
Fil: Valadares-Filho, Sebastião C.. Universidade Federal de Viçosa; Brasil
Fil: Borges, Ana L.C.C.. Universidade Federal de Minas Gerais; Brasil
Fil: Berndt, Alexandre. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Rodrigues, Paulo H.M.. Universidade de Sao Paulo; Brasil
Fil: Ku Vera, Juan C.. Universidad Autonoma de Yucatan (uady);
Fil: Molina Botero, Isabel C.. Universidad Nacional Agraria La Molina; Perú
Fil: Arango, Jacobo. Centro Internacional de Agricultura Tropical; Colombia
Fil: Reis, Ricardo A.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil
Fil: Posada Ochoa, Sandra L.. Universidad de Antioquia; Colombia
Fil: Tomich, Thierry R.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Castelán Ortega, Octavio A.. Universidad Autónoma del Estado de México; México
Fil: Marcondes, Marcos I.. Washington State University; Estados Unidos
Fil: Gómez, Carlos. Universidad Nacional Agraria La Molina; Perú
Fil: Ribeiro Filho, Henrique M.N.. Universidade Do Estado de Santa Catarina; Brasil
Fil: Gere, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina
Fil: Ariza-Nieto, Claudia. Corporación Colombiana de Investigación Agropecuaria; Colombia
Fil: Giraldo, Luis A.. Universidad Nacional de Colombia; Colombia
Fil: Gonda, Horacio Leandro. Sveriges Lantbruksuniversitet (slu);
Fil: Cerón Cucchi, María Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
Fil: Hernández, Olegario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
Fil: Ricci, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
Fil: Hristov, Alexander N.. State University of Pennsylvania; Estados Unidos
description On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.
publishDate 2023
dc.date.none.fl_str_mv 2023-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/219812
Congio, Guilhermo F.S.; Bannink, André; Mayorga, Olga L.; Rodrigues, João P.P.; Bougouin, Adeline; et al.; Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries; Elsevier; Science of the Total Environment; 856; 159128; 1-2023; 1-10
0048-9697
CONICET Digital
CONICET
url http://hdl.handle.net/11336/219812
identifier_str_mv Congio, Guilhermo F.S.; Bannink, André; Mayorga, Olga L.; Rodrigues, João P.P.; Bougouin, Adeline; et al.; Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries; Elsevier; Science of the Total Environment; 856; 159128; 1-2023; 1-10
0048-9697
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2022.159128
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0048969722062271
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083317467709440
score 13.22299