Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries
- Autores
- Congio, Guilhermo F.S.; Bannink, André; Mayorga, Olga L.; Rodrigues, João P.P.; Bougouin, Adeline; Kebreab, Ermias; Carvalho, Paulo C.F.; Berchielli, Telma T.; Mercadante, Maria E.Z.; Valadares-Filho, Sebastião C.; Borges, Ana L.C.C.; Berndt, Alexandre; Rodrigues, Paulo H.M.; Ku Vera, Juan C.; Molina Botero, Isabel C.; Arango, Jacobo; Reis, Ricardo A.; Posada Ochoa, Sandra L.; Tomich, Thierry R.; Castelán Ortega, Octavio A.; Marcondes, Marcos I.; Gómez, Carlos; Ribeiro Filho, Henrique M.N.; Gere, José Ignacio; Ariza-Nieto, Claudia; Giraldo, Luis A.; Gonda, Horacio Leandro; Cerón Cucchi, María Esperanza; Hernández, Olegario; Ricci, Patricia; Hristov, Alexander N.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.
Fil: Congio, Guilhermo F.S.. Universidade de Sao Paulo; Brasil
Fil: Bannink, André. University of Agriculture Wageningen; Países Bajos
Fil: Mayorga, Olga L.. Corporación Colombiana de Investigación Agropecuaria; Colombia
Fil: Rodrigues, João P.P.. Universidade Federal Rural do Rio de Janeiro; Brasil
Fil: Bougouin, Adeline. University of California at Davis; Estados Unidos
Fil: Kebreab, Ermias. University of California at Davis; Estados Unidos
Fil: Carvalho, Paulo C.F.. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Berchielli, Telma T.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil
Fil: Mercadante, Maria E.Z.. São Paulo Agribusiness Technology Agency; Brasil
Fil: Valadares-Filho, Sebastião C.. Universidade Federal de Viçosa; Brasil
Fil: Borges, Ana L.C.C.. Universidade Federal de Minas Gerais; Brasil
Fil: Berndt, Alexandre. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Rodrigues, Paulo H.M.. Universidade de Sao Paulo; Brasil
Fil: Ku Vera, Juan C.. Universidad Autonoma de Yucatan (uady);
Fil: Molina Botero, Isabel C.. Universidad Nacional Agraria La Molina; Perú
Fil: Arango, Jacobo. Centro Internacional de Agricultura Tropical; Colombia
Fil: Reis, Ricardo A.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil
Fil: Posada Ochoa, Sandra L.. Universidad de Antioquia; Colombia
Fil: Tomich, Thierry R.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Castelán Ortega, Octavio A.. Universidad Autónoma del Estado de México; México
Fil: Marcondes, Marcos I.. Washington State University; Estados Unidos
Fil: Gómez, Carlos. Universidad Nacional Agraria La Molina; Perú
Fil: Ribeiro Filho, Henrique M.N.. Universidade Do Estado de Santa Catarina; Brasil
Fil: Gere, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina
Fil: Ariza-Nieto, Claudia. Corporación Colombiana de Investigación Agropecuaria; Colombia
Fil: Giraldo, Luis A.. Universidad Nacional de Colombia; Colombia
Fil: Gonda, Horacio Leandro. Sveriges Lantbruksuniversitet (slu);
Fil: Cerón Cucchi, María Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
Fil: Hernández, Olegario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
Fil: Ricci, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
Fil: Hristov, Alexander N.. State University of Pennsylvania; Estados Unidos - Materia
-
DIETARY NUTRIENTS
GREENHOUSE GAS
LINEAR REGRESSION
LIVESTOCK
METHANE CONVERSION FACTOR
MODEL CROSS-VALIDATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/219812
Ver los metadatos del registro completo
id |
CONICETDig_0188a8a65046d2709a2c6f2624544e78 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/219812 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countriesCongio, Guilhermo F.S.Bannink, AndréMayorga, Olga L.Rodrigues, João P.P.Bougouin, AdelineKebreab, ErmiasCarvalho, Paulo C.F.Berchielli, Telma T.Mercadante, Maria E.Z.Valadares-Filho, Sebastião C.Borges, Ana L.C.C.Berndt, AlexandreRodrigues, Paulo H.M.Ku Vera, Juan C.Molina Botero, Isabel C.Arango, JacoboReis, Ricardo A.Posada Ochoa, Sandra L.Tomich, Thierry R.Castelán Ortega, Octavio A.Marcondes, Marcos I.Gómez, CarlosRibeiro Filho, Henrique M.N.Gere, José IgnacioAriza-Nieto, ClaudiaGiraldo, Luis A.Gonda, Horacio LeandroCerón Cucchi, María EsperanzaHernández, OlegarioRicci, PatriciaHristov, Alexander N.DIETARY NUTRIENTSGREENHOUSE GASLINEAR REGRESSIONLIVESTOCKMETHANE CONVERSION FACTORMODEL CROSS-VALIDATIONhttps://purl.org/becyt/ford/4.2https://purl.org/becyt/ford/4On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.Fil: Congio, Guilhermo F.S.. Universidade de Sao Paulo; BrasilFil: Bannink, André. University of Agriculture Wageningen; Países BajosFil: Mayorga, Olga L.. Corporación Colombiana de Investigación Agropecuaria; ColombiaFil: Rodrigues, João P.P.. Universidade Federal Rural do Rio de Janeiro; BrasilFil: Bougouin, Adeline. University of California at Davis; Estados UnidosFil: Kebreab, Ermias. University of California at Davis; Estados UnidosFil: Carvalho, Paulo C.F.. Universidade Federal do Rio Grande do Sul; BrasilFil: Berchielli, Telma T.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Mercadante, Maria E.Z.. São Paulo Agribusiness Technology Agency; BrasilFil: Valadares-Filho, Sebastião C.. Universidade Federal de Viçosa; BrasilFil: Borges, Ana L.C.C.. Universidade Federal de Minas Gerais; BrasilFil: Berndt, Alexandre. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Rodrigues, Paulo H.M.. Universidade de Sao Paulo; BrasilFil: Ku Vera, Juan C.. Universidad Autonoma de Yucatan (uady);Fil: Molina Botero, Isabel C.. Universidad Nacional Agraria La Molina; PerúFil: Arango, Jacobo. Centro Internacional de Agricultura Tropical; ColombiaFil: Reis, Ricardo A.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Posada Ochoa, Sandra L.. Universidad de Antioquia; ColombiaFil: Tomich, Thierry R.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Castelán Ortega, Octavio A.. Universidad Autónoma del Estado de México; MéxicoFil: Marcondes, Marcos I.. Washington State University; Estados UnidosFil: Gómez, Carlos. Universidad Nacional Agraria La Molina; PerúFil: Ribeiro Filho, Henrique M.N.. Universidade Do Estado de Santa Catarina; BrasilFil: Gere, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Ariza-Nieto, Claudia. Corporación Colombiana de Investigación Agropecuaria; ColombiaFil: Giraldo, Luis A.. Universidad Nacional de Colombia; ColombiaFil: Gonda, Horacio Leandro. Sveriges Lantbruksuniversitet (slu);Fil: Cerón Cucchi, María Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; ArgentinaFil: Hernández, Olegario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; ArgentinaFil: Ricci, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; ArgentinaFil: Hristov, Alexander N.. State University of Pennsylvania; Estados UnidosElsevier2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219812Congio, Guilhermo F.S.; Bannink, André; Mayorga, Olga L.; Rodrigues, João P.P.; Bougouin, Adeline; et al.; Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries; Elsevier; Science of the Total Environment; 856; 159128; 1-2023; 1-100048-9697CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2022.159128info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0048969722062271info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:52Zoai:ri.conicet.gov.ar:11336/219812instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:53.239CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries |
title |
Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries |
spellingShingle |
Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries Congio, Guilhermo F.S. DIETARY NUTRIENTS GREENHOUSE GAS LINEAR REGRESSION LIVESTOCK METHANE CONVERSION FACTOR MODEL CROSS-VALIDATION |
title_short |
Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries |
title_full |
Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries |
title_fullStr |
Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries |
title_full_unstemmed |
Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries |
title_sort |
Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries |
dc.creator.none.fl_str_mv |
Congio, Guilhermo F.S. Bannink, André Mayorga, Olga L. Rodrigues, João P.P. Bougouin, Adeline Kebreab, Ermias Carvalho, Paulo C.F. Berchielli, Telma T. Mercadante, Maria E.Z. Valadares-Filho, Sebastião C. Borges, Ana L.C.C. Berndt, Alexandre Rodrigues, Paulo H.M. Ku Vera, Juan C. Molina Botero, Isabel C. Arango, Jacobo Reis, Ricardo A. Posada Ochoa, Sandra L. Tomich, Thierry R. Castelán Ortega, Octavio A. Marcondes, Marcos I. Gómez, Carlos Ribeiro Filho, Henrique M.N. Gere, José Ignacio Ariza-Nieto, Claudia Giraldo, Luis A. Gonda, Horacio Leandro Cerón Cucchi, María Esperanza Hernández, Olegario Ricci, Patricia Hristov, Alexander N. |
author |
Congio, Guilhermo F.S. |
author_facet |
Congio, Guilhermo F.S. Bannink, André Mayorga, Olga L. Rodrigues, João P.P. Bougouin, Adeline Kebreab, Ermias Carvalho, Paulo C.F. Berchielli, Telma T. Mercadante, Maria E.Z. Valadares-Filho, Sebastião C. Borges, Ana L.C.C. Berndt, Alexandre Rodrigues, Paulo H.M. Ku Vera, Juan C. Molina Botero, Isabel C. Arango, Jacobo Reis, Ricardo A. Posada Ochoa, Sandra L. Tomich, Thierry R. Castelán Ortega, Octavio A. Marcondes, Marcos I. Gómez, Carlos Ribeiro Filho, Henrique M.N. Gere, José Ignacio Ariza-Nieto, Claudia Giraldo, Luis A. Gonda, Horacio Leandro Cerón Cucchi, María Esperanza Hernández, Olegario Ricci, Patricia Hristov, Alexander N. |
author_role |
author |
author2 |
Bannink, André Mayorga, Olga L. Rodrigues, João P.P. Bougouin, Adeline Kebreab, Ermias Carvalho, Paulo C.F. Berchielli, Telma T. Mercadante, Maria E.Z. Valadares-Filho, Sebastião C. Borges, Ana L.C.C. Berndt, Alexandre Rodrigues, Paulo H.M. Ku Vera, Juan C. Molina Botero, Isabel C. Arango, Jacobo Reis, Ricardo A. Posada Ochoa, Sandra L. Tomich, Thierry R. Castelán Ortega, Octavio A. Marcondes, Marcos I. Gómez, Carlos Ribeiro Filho, Henrique M.N. Gere, José Ignacio Ariza-Nieto, Claudia Giraldo, Luis A. Gonda, Horacio Leandro Cerón Cucchi, María Esperanza Hernández, Olegario Ricci, Patricia Hristov, Alexander N. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
DIETARY NUTRIENTS GREENHOUSE GAS LINEAR REGRESSION LIVESTOCK METHANE CONVERSION FACTOR MODEL CROSS-VALIDATION |
topic |
DIETARY NUTRIENTS GREENHOUSE GAS LINEAR REGRESSION LIVESTOCK METHANE CONVERSION FACTOR MODEL CROSS-VALIDATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.2 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data. Fil: Congio, Guilhermo F.S.. Universidade de Sao Paulo; Brasil Fil: Bannink, André. University of Agriculture Wageningen; Países Bajos Fil: Mayorga, Olga L.. Corporación Colombiana de Investigación Agropecuaria; Colombia Fil: Rodrigues, João P.P.. Universidade Federal Rural do Rio de Janeiro; Brasil Fil: Bougouin, Adeline. University of California at Davis; Estados Unidos Fil: Kebreab, Ermias. University of California at Davis; Estados Unidos Fil: Carvalho, Paulo C.F.. Universidade Federal do Rio Grande do Sul; Brasil Fil: Berchielli, Telma T.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil Fil: Mercadante, Maria E.Z.. São Paulo Agribusiness Technology Agency; Brasil Fil: Valadares-Filho, Sebastião C.. Universidade Federal de Viçosa; Brasil Fil: Borges, Ana L.C.C.. Universidade Federal de Minas Gerais; Brasil Fil: Berndt, Alexandre. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil Fil: Rodrigues, Paulo H.M.. Universidade de Sao Paulo; Brasil Fil: Ku Vera, Juan C.. Universidad Autonoma de Yucatan (uady); Fil: Molina Botero, Isabel C.. Universidad Nacional Agraria La Molina; Perú Fil: Arango, Jacobo. Centro Internacional de Agricultura Tropical; Colombia Fil: Reis, Ricardo A.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil Fil: Posada Ochoa, Sandra L.. Universidad de Antioquia; Colombia Fil: Tomich, Thierry R.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil Fil: Castelán Ortega, Octavio A.. Universidad Autónoma del Estado de México; México Fil: Marcondes, Marcos I.. Washington State University; Estados Unidos Fil: Gómez, Carlos. Universidad Nacional Agraria La Molina; Perú Fil: Ribeiro Filho, Henrique M.N.. Universidade Do Estado de Santa Catarina; Brasil Fil: Gere, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina Fil: Ariza-Nieto, Claudia. Corporación Colombiana de Investigación Agropecuaria; Colombia Fil: Giraldo, Luis A.. Universidad Nacional de Colombia; Colombia Fil: Gonda, Horacio Leandro. Sveriges Lantbruksuniversitet (slu); Fil: Cerón Cucchi, María Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina Fil: Hernández, Olegario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina Fil: Ricci, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina Fil: Hristov, Alexander N.. State University of Pennsylvania; Estados Unidos |
description |
On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/219812 Congio, Guilhermo F.S.; Bannink, André; Mayorga, Olga L.; Rodrigues, João P.P.; Bougouin, Adeline; et al.; Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries; Elsevier; Science of the Total Environment; 856; 159128; 1-2023; 1-10 0048-9697 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/219812 |
identifier_str_mv |
Congio, Guilhermo F.S.; Bannink, André; Mayorga, Olga L.; Rodrigues, João P.P.; Bougouin, Adeline; et al.; Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries; Elsevier; Science of the Total Environment; 856; 159128; 1-2023; 1-10 0048-9697 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2022.159128 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0048969722062271 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083317467709440 |
score |
13.22299 |