Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat
- Autores
- Kippes, Néstor Fabián; Zhu, Jie; Chen, Andrew; Vanzetti, Leonardo Sebastian; Lukaszewski, Adam; Nishida, Hidetaka; Kato, Kenji; Dvorak, Jan; Dubcovsky, Jorge
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Wheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene.
EEA Marcos Juárez
Fil: Kippes, Néstor Fabián. University of California at Davis. Department of Plant Sciences; Estados Unidos
Fil: Zhu, Jie. Washington State University. USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit; Estados Unidos
Fil: Chen, Andrew. University of California at Davis. Department of Plant Sciences; Estados Unidos
Fil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lukaszewski, Adam. University of California. Department of Botany and Plant Sciences; Estados Unidos
Fil: Nishida, Hidetaka. Okayama University. Graduate School of Environmental and Life Science; Japón
Fil: Kato, Kenji. Okayama University. Graduate School of Environmental and Life Science; Japón
Fil: Dvorak, Jan. University of California at Davis. Department of Plant Sciences; Estados Unidos
Fil: Dubcovsky, Jorge. University of California at Davies. Department of Plant Sciences; Estados Unidos. Howard Hughes Medical Institute; Estados Unidos - Fuente
- Molecular Genetics and Genomics 289 (1) : 47–62 (February 2014)
- Materia
-
Trigo
Vernalización
Mapas Genéticos
Hexaploidia
Wheat
Vernalization
Genetic Maps
Hexaploidy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/2111
Ver los metadatos del registro completo
id |
INTADig_c18461599c161c8dd7dab4d95871892f |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/2111 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheatKippes, Néstor FabiánZhu, JieChen, AndrewVanzetti, Leonardo SebastianLukaszewski, AdamNishida, HidetakaKato, KenjiDvorak, JanDubcovsky, JorgeTrigoVernalizaciónMapas GenéticosHexaploidiaWheatVernalizationGenetic MapsHexaploidyWheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene.EEA Marcos JuárezFil: Kippes, Néstor Fabián. University of California at Davis. Department of Plant Sciences; Estados UnidosFil: Zhu, Jie. Washington State University. USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit; Estados UnidosFil: Chen, Andrew. University of California at Davis. Department of Plant Sciences; Estados UnidosFil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lukaszewski, Adam. University of California. Department of Botany and Plant Sciences; Estados UnidosFil: Nishida, Hidetaka. Okayama University. Graduate School of Environmental and Life Science; JapónFil: Kato, Kenji. Okayama University. Graduate School of Environmental and Life Science; JapónFil: Dvorak, Jan. University of California at Davis. Department of Plant Sciences; Estados UnidosFil: Dubcovsky, Jorge. University of California at Davies. Department of Plant Sciences; Estados Unidos. Howard Hughes Medical Institute; Estados Unidos2018-03-23T17:35:13Z2018-03-23T17:35:13Z2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://link.springer.com/article/10.1007/s00438-013-0788-yhttp://hdl.handle.net/20.500.12123/2111http://ri.conicet.gov.ar/handle/11336/285151617-4615 (Print)1617-4623 (Online)https://doi.org/10.1007/s00438-013-0788-yMolecular Genetics and Genomics 289 (1) : 47–62 (February 2014)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:47:10Zoai:localhost:20.500.12123/2111instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:47:11.221INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat |
title |
Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat |
spellingShingle |
Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat Kippes, Néstor Fabián Trigo Vernalización Mapas Genéticos Hexaploidia Wheat Vernalization Genetic Maps Hexaploidy |
title_short |
Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat |
title_full |
Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat |
title_fullStr |
Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat |
title_full_unstemmed |
Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat |
title_sort |
Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat |
dc.creator.none.fl_str_mv |
Kippes, Néstor Fabián Zhu, Jie Chen, Andrew Vanzetti, Leonardo Sebastian Lukaszewski, Adam Nishida, Hidetaka Kato, Kenji Dvorak, Jan Dubcovsky, Jorge |
author |
Kippes, Néstor Fabián |
author_facet |
Kippes, Néstor Fabián Zhu, Jie Chen, Andrew Vanzetti, Leonardo Sebastian Lukaszewski, Adam Nishida, Hidetaka Kato, Kenji Dvorak, Jan Dubcovsky, Jorge |
author_role |
author |
author2 |
Zhu, Jie Chen, Andrew Vanzetti, Leonardo Sebastian Lukaszewski, Adam Nishida, Hidetaka Kato, Kenji Dvorak, Jan Dubcovsky, Jorge |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Trigo Vernalización Mapas Genéticos Hexaploidia Wheat Vernalization Genetic Maps Hexaploidy |
topic |
Trigo Vernalización Mapas Genéticos Hexaploidia Wheat Vernalization Genetic Maps Hexaploidy |
dc.description.none.fl_txt_mv |
Wheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene. EEA Marcos Juárez Fil: Kippes, Néstor Fabián. University of California at Davis. Department of Plant Sciences; Estados Unidos Fil: Zhu, Jie. Washington State University. USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit; Estados Unidos Fil: Chen, Andrew. University of California at Davis. Department of Plant Sciences; Estados Unidos Fil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lukaszewski, Adam. University of California. Department of Botany and Plant Sciences; Estados Unidos Fil: Nishida, Hidetaka. Okayama University. Graduate School of Environmental and Life Science; Japón Fil: Kato, Kenji. Okayama University. Graduate School of Environmental and Life Science; Japón Fil: Dvorak, Jan. University of California at Davis. Department of Plant Sciences; Estados Unidos Fil: Dubcovsky, Jorge. University of California at Davies. Department of Plant Sciences; Estados Unidos. Howard Hughes Medical Institute; Estados Unidos |
description |
Wheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 2018-03-23T17:35:13Z 2018-03-23T17:35:13Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://link.springer.com/article/10.1007/s00438-013-0788-y http://hdl.handle.net/20.500.12123/2111 http://ri.conicet.gov.ar/handle/11336/28515 1617-4615 (Print) 1617-4623 (Online) https://doi.org/10.1007/s00438-013-0788-y |
url |
https://link.springer.com/article/10.1007/s00438-013-0788-y http://hdl.handle.net/20.500.12123/2111 http://ri.conicet.gov.ar/handle/11336/28515 https://doi.org/10.1007/s00438-013-0788-y |
identifier_str_mv |
1617-4615 (Print) 1617-4623 (Online) |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Molecular Genetics and Genomics 289 (1) : 47–62 (February 2014) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341353396109312 |
score |
12.623145 |