Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat

Autores
Kippes, Néstor Fabián; Zhu, Jie; Chen, Andrew; Vanzetti, Leonardo Sebastian; Lukaszewski, Adam; Nishida, Hidetaka; Kato, Kenji; Dvorak, Jan; Dubcovsky, Jorge
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Wheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene.
EEA Marcos Juárez
Fil: Kippes, Néstor Fabián. University of California at Davis. Department of Plant Sciences; Estados Unidos
Fil: Zhu, Jie. Washington State University. USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit; Estados Unidos
Fil: Chen, Andrew. University of California at Davis. Department of Plant Sciences; Estados Unidos
Fil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lukaszewski, Adam. University of California. Department of Botany and Plant Sciences; Estados Unidos
Fil: Nishida, Hidetaka. Okayama University. Graduate School of Environmental and Life Science; Japón
Fil: Kato, Kenji. Okayama University. Graduate School of Environmental and Life Science; Japón
Fil: Dvorak, Jan. University of California at Davis. Department of Plant Sciences; Estados Unidos
Fil: Dubcovsky, Jorge. University of California at Davies. Department of Plant Sciences; Estados Unidos. Howard Hughes Medical Institute; Estados Unidos
Fuente
Molecular Genetics and Genomics 289 (1) : 47–62 (February 2014)
Materia
Trigo
Vernalización
Mapas Genéticos
Hexaploidia
Wheat
Vernalization
Genetic Maps
Hexaploidy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/2111

id INTADig_c18461599c161c8dd7dab4d95871892f
oai_identifier_str oai:localhost:20.500.12123/2111
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheatKippes, Néstor FabiánZhu, JieChen, AndrewVanzetti, Leonardo SebastianLukaszewski, AdamNishida, HidetakaKato, KenjiDvorak, JanDubcovsky, JorgeTrigoVernalizaciónMapas GenéticosHexaploidiaWheatVernalizationGenetic MapsHexaploidyWheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene.EEA Marcos JuárezFil: Kippes, Néstor Fabián. University of California at Davis. Department of Plant Sciences; Estados UnidosFil: Zhu, Jie. Washington State University. USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit; Estados UnidosFil: Chen, Andrew. University of California at Davis. Department of Plant Sciences; Estados UnidosFil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lukaszewski, Adam. University of California. Department of Botany and Plant Sciences; Estados UnidosFil: Nishida, Hidetaka. Okayama University. Graduate School of Environmental and Life Science; JapónFil: Kato, Kenji. Okayama University. Graduate School of Environmental and Life Science; JapónFil: Dvorak, Jan. University of California at Davis. Department of Plant Sciences; Estados UnidosFil: Dubcovsky, Jorge. University of California at Davies. Department of Plant Sciences; Estados Unidos. Howard Hughes Medical Institute; Estados Unidos2018-03-23T17:35:13Z2018-03-23T17:35:13Z2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://link.springer.com/article/10.1007/s00438-013-0788-yhttp://hdl.handle.net/20.500.12123/2111http://ri.conicet.gov.ar/handle/11336/285151617-4615 (Print)1617-4623 (Online)https://doi.org/10.1007/s00438-013-0788-yMolecular Genetics and Genomics 289 (1) : 47–62 (February 2014)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:47:10Zoai:localhost:20.500.12123/2111instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:47:11.221INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat
title Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat
spellingShingle Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat
Kippes, Néstor Fabián
Trigo
Vernalización
Mapas Genéticos
Hexaploidia
Wheat
Vernalization
Genetic Maps
Hexaploidy
title_short Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat
title_full Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat
title_fullStr Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat
title_full_unstemmed Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat
title_sort Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat
dc.creator.none.fl_str_mv Kippes, Néstor Fabián
Zhu, Jie
Chen, Andrew
Vanzetti, Leonardo Sebastian
Lukaszewski, Adam
Nishida, Hidetaka
Kato, Kenji
Dvorak, Jan
Dubcovsky, Jorge
author Kippes, Néstor Fabián
author_facet Kippes, Néstor Fabián
Zhu, Jie
Chen, Andrew
Vanzetti, Leonardo Sebastian
Lukaszewski, Adam
Nishida, Hidetaka
Kato, Kenji
Dvorak, Jan
Dubcovsky, Jorge
author_role author
author2 Zhu, Jie
Chen, Andrew
Vanzetti, Leonardo Sebastian
Lukaszewski, Adam
Nishida, Hidetaka
Kato, Kenji
Dvorak, Jan
Dubcovsky, Jorge
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Trigo
Vernalización
Mapas Genéticos
Hexaploidia
Wheat
Vernalization
Genetic Maps
Hexaploidy
topic Trigo
Vernalización
Mapas Genéticos
Hexaploidia
Wheat
Vernalization
Genetic Maps
Hexaploidy
dc.description.none.fl_txt_mv Wheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene.
EEA Marcos Juárez
Fil: Kippes, Néstor Fabián. University of California at Davis. Department of Plant Sciences; Estados Unidos
Fil: Zhu, Jie. Washington State University. USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit; Estados Unidos
Fil: Chen, Andrew. University of California at Davis. Department of Plant Sciences; Estados Unidos
Fil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lukaszewski, Adam. University of California. Department of Botany and Plant Sciences; Estados Unidos
Fil: Nishida, Hidetaka. Okayama University. Graduate School of Environmental and Life Science; Japón
Fil: Kato, Kenji. Okayama University. Graduate School of Environmental and Life Science; Japón
Fil: Dvorak, Jan. University of California at Davis. Department of Plant Sciences; Estados Unidos
Fil: Dubcovsky, Jorge. University of California at Davies. Department of Plant Sciences; Estados Unidos. Howard Hughes Medical Institute; Estados Unidos
description Wheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
2018-03-23T17:35:13Z
2018-03-23T17:35:13Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://link.springer.com/article/10.1007/s00438-013-0788-y
http://hdl.handle.net/20.500.12123/2111
http://ri.conicet.gov.ar/handle/11336/28515
1617-4615 (Print)
1617-4623 (Online)
https://doi.org/10.1007/s00438-013-0788-y
url https://link.springer.com/article/10.1007/s00438-013-0788-y
http://hdl.handle.net/20.500.12123/2111
http://ri.conicet.gov.ar/handle/11336/28515
https://doi.org/10.1007/s00438-013-0788-y
identifier_str_mv 1617-4615 (Print)
1617-4623 (Online)
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Molecular Genetics and Genomics 289 (1) : 47–62 (February 2014)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341353396109312
score 12.623145