Machine learning in space and time for modelling soil organic carbon change

Autores
Heuvelink, Gerard B.M.; Angelini, Marcos Esteban; Poggio, Laura; Bai, Zhanguo; Batjes, Niels H.; van den Bosch, Rik; Bossio, Deborah; Estella, Sergio; Lehmann, Johannes; Olmedo, Guillermo Federico; Sanderman, Jonathan
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a data-driven, statistical method for mapping SOC stocks in space and time, using Argentina as a pilot. We used quantile regression forest machine learning to predict annual SOC stock at 0–30 cm depth at 250 m resolution for Argentina between 1982 and 2017. The model was calibrated using over 5,000 SOC stock values from the 36-year time period and 35 environmental covariates. We preprocessed normalized difference vegetation index (NDVI) dynamic covariates using a temporal low-pass filter to allow the SOC stock for a given year to depend on the NDVI of the current as well as preceding years. Predictions had modest temporal variation, with an average decrease for the entire country from 2.55 to 2.48 kg C m−2 over the 36-year period (equivalent to a decline of 211 Gg C, 3.0% of the total 0–30 cm SOC stock in Argentina). The Pampa region had a larger estimated SOC stock decrease from 4.62 to 4.34 kg C m−2 (5.9%) during the same period. For the 2001–2015 period, predicted temporal variation was seven-fold larger than that obtained using the Tier 1 approach of the Intergovernmental Panel on Climate Change and United Nations Convention to Combat Desertification. Prediction uncertainties turned out to be substantial, mainly due to the limited number and poor spatial and static, whereas SOC is dynamic and SOC dynamics are of particular interest to carbon sequestration and land degradation studies. Thus, there is a clear need to extend spatial SOC mapping to space–time SOC mapping. temporal distribution of the calibration data, and the limited explanatory power of the covariates. Cross-validation confirmed that SOC stock prediction accuracy was limited, with a mean error of 0.03 kg C m−2 and a root mean squared error of 2.04 kg C m−2. In spite of the large uncertainties, this work showed that machine learning methods can be used for space–time SOC mapping and may yield valuable information to land managers and policymakers, provided that SOC observation density in space and time is sufficiently large.
Fil: Heuvelink, Gerard B.M. ISRIC - World soil information; Holanda. Wageningen University. Soil Geography and Landscape Group; Holanda
Fil: Angelici, Marcos E. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Poggio, Laura ISRIC - World soil information, Wageningen; Holanda
Fil: Bai, Zhanguo ISRIC - World soil information, Wageningen, The Netherlands
Fil: Batjes, Niels H. ISRIC - World soil information, Wageningen, The Netherlands
Fil: an den Bosch, Rik ISRIC - World soil information, Wageningen, The Netherlands
Fil: Bossio, Deborah The Nature Conservancy; Estados Unidos
Fil: Estella, Sergio Vizzuality; España
Fil: Lehmann, Jhoannes. Cornell University. Soil and Crop Sciences; Estados Unidos
Fil: Olmedo, Guillermo F. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
Fil: Sandermann, Jonathan. Woods Hole Research Center; Estados Unidos
Fuente
European Journal of Soil Science : 1-17 (First published: 20 May 2020)
Materia
Argentina
Estimación de las Existencias de Carbono
Cambio Climático
Degradación de Tierras
Carbon Stock Assessments
Climate Change
Land Degradation
Quantile Regression Rorest
Space-time Mapping
Bosque de Regresión de Cuantiles
Mapeo Espacio-tiempo
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/8054

id INTADig_b908ab6806474ca661de201248ac9a17
oai_identifier_str oai:localhost:20.500.12123/8054
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Machine learning in space and time for modelling soil organic carbon changeHeuvelink, Gerard B.M.Angelini, Marcos EstebanPoggio, LauraBai, ZhanguoBatjes, Niels H.van den Bosch, RikBossio, DeborahEstella, SergioLehmann, JohannesOlmedo, Guillermo FedericoSanderman, JonathanArgentinaEstimación de las Existencias de CarbonoCambio ClimáticoDegradación de TierrasCarbon Stock AssessmentsClimate ChangeLand DegradationQuantile Regression RorestSpace-time MappingBosque de Regresión de CuantilesMapeo Espacio-tiempoSpatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a data-driven, statistical method for mapping SOC stocks in space and time, using Argentina as a pilot. We used quantile regression forest machine learning to predict annual SOC stock at 0–30 cm depth at 250 m resolution for Argentina between 1982 and 2017. The model was calibrated using over 5,000 SOC stock values from the 36-year time period and 35 environmental covariates. We preprocessed normalized difference vegetation index (NDVI) dynamic covariates using a temporal low-pass filter to allow the SOC stock for a given year to depend on the NDVI of the current as well as preceding years. Predictions had modest temporal variation, with an average decrease for the entire country from 2.55 to 2.48 kg C m−2 over the 36-year period (equivalent to a decline of 211 Gg C, 3.0% of the total 0–30 cm SOC stock in Argentina). The Pampa region had a larger estimated SOC stock decrease from 4.62 to 4.34 kg C m−2 (5.9%) during the same period. For the 2001–2015 period, predicted temporal variation was seven-fold larger than that obtained using the Tier 1 approach of the Intergovernmental Panel on Climate Change and United Nations Convention to Combat Desertification. Prediction uncertainties turned out to be substantial, mainly due to the limited number and poor spatial and static, whereas SOC is dynamic and SOC dynamics are of particular interest to carbon sequestration and land degradation studies. Thus, there is a clear need to extend spatial SOC mapping to space–time SOC mapping. temporal distribution of the calibration data, and the limited explanatory power of the covariates. Cross-validation confirmed that SOC stock prediction accuracy was limited, with a mean error of 0.03 kg C m−2 and a root mean squared error of 2.04 kg C m−2. In spite of the large uncertainties, this work showed that machine learning methods can be used for space–time SOC mapping and may yield valuable information to land managers and policymakers, provided that SOC observation density in space and time is sufficiently large.Fil: Heuvelink, Gerard B.M. ISRIC - World soil information; Holanda. Wageningen University. Soil Geography and Landscape Group; HolandaFil: Angelici, Marcos E. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Poggio, Laura ISRIC - World soil information, Wageningen; HolandaFil: Bai, Zhanguo ISRIC - World soil information, Wageningen, The NetherlandsFil: Batjes, Niels H. ISRIC - World soil information, Wageningen, The NetherlandsFil: an den Bosch, Rik ISRIC - World soil information, Wageningen, The NetherlandsFil: Bossio, Deborah The Nature Conservancy; Estados UnidosFil: Estella, Sergio Vizzuality; EspañaFil: Lehmann, Jhoannes. Cornell University. Soil and Crop Sciences; Estados UnidosFil: Olmedo, Guillermo F. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Sandermann, Jonathan. Woods Hole Research Center; Estados UnidosWiley2020-10-15T11:17:38Z2020-10-15T11:17:38Z2020-05-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/8054https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.129981365-2389https://doi.org/10.1111/ejss.12998European Journal of Soil Science : 1-17 (First published: 20 May 2020)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:29:55Zoai:localhost:20.500.12123/8054instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:29:55.539INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Machine learning in space and time for modelling soil organic carbon change
title Machine learning in space and time for modelling soil organic carbon change
spellingShingle Machine learning in space and time for modelling soil organic carbon change
Heuvelink, Gerard B.M.
Argentina
Estimación de las Existencias de Carbono
Cambio Climático
Degradación de Tierras
Carbon Stock Assessments
Climate Change
Land Degradation
Quantile Regression Rorest
Space-time Mapping
Bosque de Regresión de Cuantiles
Mapeo Espacio-tiempo
title_short Machine learning in space and time for modelling soil organic carbon change
title_full Machine learning in space and time for modelling soil organic carbon change
title_fullStr Machine learning in space and time for modelling soil organic carbon change
title_full_unstemmed Machine learning in space and time for modelling soil organic carbon change
title_sort Machine learning in space and time for modelling soil organic carbon change
dc.creator.none.fl_str_mv Heuvelink, Gerard B.M.
Angelini, Marcos Esteban
Poggio, Laura
Bai, Zhanguo
Batjes, Niels H.
van den Bosch, Rik
Bossio, Deborah
Estella, Sergio
Lehmann, Johannes
Olmedo, Guillermo Federico
Sanderman, Jonathan
author Heuvelink, Gerard B.M.
author_facet Heuvelink, Gerard B.M.
Angelini, Marcos Esteban
Poggio, Laura
Bai, Zhanguo
Batjes, Niels H.
van den Bosch, Rik
Bossio, Deborah
Estella, Sergio
Lehmann, Johannes
Olmedo, Guillermo Federico
Sanderman, Jonathan
author_role author
author2 Angelini, Marcos Esteban
Poggio, Laura
Bai, Zhanguo
Batjes, Niels H.
van den Bosch, Rik
Bossio, Deborah
Estella, Sergio
Lehmann, Johannes
Olmedo, Guillermo Federico
Sanderman, Jonathan
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Argentina
Estimación de las Existencias de Carbono
Cambio Climático
Degradación de Tierras
Carbon Stock Assessments
Climate Change
Land Degradation
Quantile Regression Rorest
Space-time Mapping
Bosque de Regresión de Cuantiles
Mapeo Espacio-tiempo
topic Argentina
Estimación de las Existencias de Carbono
Cambio Climático
Degradación de Tierras
Carbon Stock Assessments
Climate Change
Land Degradation
Quantile Regression Rorest
Space-time Mapping
Bosque de Regresión de Cuantiles
Mapeo Espacio-tiempo
dc.description.none.fl_txt_mv Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a data-driven, statistical method for mapping SOC stocks in space and time, using Argentina as a pilot. We used quantile regression forest machine learning to predict annual SOC stock at 0–30 cm depth at 250 m resolution for Argentina between 1982 and 2017. The model was calibrated using over 5,000 SOC stock values from the 36-year time period and 35 environmental covariates. We preprocessed normalized difference vegetation index (NDVI) dynamic covariates using a temporal low-pass filter to allow the SOC stock for a given year to depend on the NDVI of the current as well as preceding years. Predictions had modest temporal variation, with an average decrease for the entire country from 2.55 to 2.48 kg C m−2 over the 36-year period (equivalent to a decline of 211 Gg C, 3.0% of the total 0–30 cm SOC stock in Argentina). The Pampa region had a larger estimated SOC stock decrease from 4.62 to 4.34 kg C m−2 (5.9%) during the same period. For the 2001–2015 period, predicted temporal variation was seven-fold larger than that obtained using the Tier 1 approach of the Intergovernmental Panel on Climate Change and United Nations Convention to Combat Desertification. Prediction uncertainties turned out to be substantial, mainly due to the limited number and poor spatial and static, whereas SOC is dynamic and SOC dynamics are of particular interest to carbon sequestration and land degradation studies. Thus, there is a clear need to extend spatial SOC mapping to space–time SOC mapping. temporal distribution of the calibration data, and the limited explanatory power of the covariates. Cross-validation confirmed that SOC stock prediction accuracy was limited, with a mean error of 0.03 kg C m−2 and a root mean squared error of 2.04 kg C m−2. In spite of the large uncertainties, this work showed that machine learning methods can be used for space–time SOC mapping and may yield valuable information to land managers and policymakers, provided that SOC observation density in space and time is sufficiently large.
Fil: Heuvelink, Gerard B.M. ISRIC - World soil information; Holanda. Wageningen University. Soil Geography and Landscape Group; Holanda
Fil: Angelici, Marcos E. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Poggio, Laura ISRIC - World soil information, Wageningen; Holanda
Fil: Bai, Zhanguo ISRIC - World soil information, Wageningen, The Netherlands
Fil: Batjes, Niels H. ISRIC - World soil information, Wageningen, The Netherlands
Fil: an den Bosch, Rik ISRIC - World soil information, Wageningen, The Netherlands
Fil: Bossio, Deborah The Nature Conservancy; Estados Unidos
Fil: Estella, Sergio Vizzuality; España
Fil: Lehmann, Jhoannes. Cornell University. Soil and Crop Sciences; Estados Unidos
Fil: Olmedo, Guillermo F. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
Fil: Sandermann, Jonathan. Woods Hole Research Center; Estados Unidos
description Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a data-driven, statistical method for mapping SOC stocks in space and time, using Argentina as a pilot. We used quantile regression forest machine learning to predict annual SOC stock at 0–30 cm depth at 250 m resolution for Argentina between 1982 and 2017. The model was calibrated using over 5,000 SOC stock values from the 36-year time period and 35 environmental covariates. We preprocessed normalized difference vegetation index (NDVI) dynamic covariates using a temporal low-pass filter to allow the SOC stock for a given year to depend on the NDVI of the current as well as preceding years. Predictions had modest temporal variation, with an average decrease for the entire country from 2.55 to 2.48 kg C m−2 over the 36-year period (equivalent to a decline of 211 Gg C, 3.0% of the total 0–30 cm SOC stock in Argentina). The Pampa region had a larger estimated SOC stock decrease from 4.62 to 4.34 kg C m−2 (5.9%) during the same period. For the 2001–2015 period, predicted temporal variation was seven-fold larger than that obtained using the Tier 1 approach of the Intergovernmental Panel on Climate Change and United Nations Convention to Combat Desertification. Prediction uncertainties turned out to be substantial, mainly due to the limited number and poor spatial and static, whereas SOC is dynamic and SOC dynamics are of particular interest to carbon sequestration and land degradation studies. Thus, there is a clear need to extend spatial SOC mapping to space–time SOC mapping. temporal distribution of the calibration data, and the limited explanatory power of the covariates. Cross-validation confirmed that SOC stock prediction accuracy was limited, with a mean error of 0.03 kg C m−2 and a root mean squared error of 2.04 kg C m−2. In spite of the large uncertainties, this work showed that machine learning methods can be used for space–time SOC mapping and may yield valuable information to land managers and policymakers, provided that SOC observation density in space and time is sufficiently large.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-15T11:17:38Z
2020-10-15T11:17:38Z
2020-05-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/8054
https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12998
1365-2389
https://doi.org/10.1111/ejss.12998
url http://hdl.handle.net/20.500.12123/8054
https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12998
https://doi.org/10.1111/ejss.12998
identifier_str_mv 1365-2389
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv European Journal of Soil Science : 1-17 (First published: 20 May 2020)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143528935096320
score 12.712165