Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
- Autores
- Yunjun, Yao; Shunlin, Liang; Yuhu, Zhang; Jiquan, Chen; Xianglan, Li; Kun, Jia; Xiaotong, Zhang; Fisher, Joshua B.; Xuanyu, Wang; Lilin, Zhang; Jia, Xu; Changliang, Shao; Posse Beaulieu, Gabriela; Yingnian, Li; Magliulo, Vincenzo; Varlagin, Andrej; Moors, Eddy J.; Boike, Julia; Macfarlane, Craig; Kato, Tomomichi; Buchmann, Nina; Billesbach, D.P.; Beringer, Jason; Wolf, Sebastian; Papuga, Shirley A.; Wohlfahrt, Georg; Montagnani, Leonardo; Ardö, Jonas; Paul-Limoges, Eugénie; Emmel, Carmen; Hörtnagl, Lukas; Sachs, Torsten; Gruening, Carsten; Gioli, Beniamino; López-Ballesteros, Ana; Steinbrecher, Rainer; Gielen, Bert
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models.
Inst. de Clima y Agua
Fil: Yunjun, Yao. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Shunlin, Liang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Xianglan, Li. Beijing Normal University. College of Global Change and Earth System Science; China
Fil: Yuhu, Zhang. Capital Normal University. College of Resource Environment and Tourism; China
Fil: Jiquan, Chen. Michigan State University. CGCEO/Geography; Estados Unidos
Fil: Kun, Jia. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Xiaotong, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Fisher, Joshua B. California Institute of Technology. Jet Propulsion Laboratory; Estados Unidos
Fil: Xuanyu, Wang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Lilin, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Jia, Xu. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Changliang, Shao. Michigan State University. CGCEO/Geography; Estados Unidos
Fil: Posse Beaulieu, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Yingnian, Li. Chinese Academy of Sciences. Northwest Institute of Plateau Biology; China
Fil: Magliulo, Vincenzo. Consiglio Nazionale delle Ricerche. Institute of Mediterranean Forest and Agricultural Systems; Italia
Fil: Varlagin, Andrej. Russian Academy of Sciences. A.N. Severtsov Institute of Ecology and Evolution; Rusia
Fil: Moors, Eddy J. Wageningen University and Research, Wageningen Environmental Research; Holanda
Fil: Boike, Julia. Alfred Wegener Institute for Polar and Marine Research; Alemania
Fil: Macfarlane, Craig. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water; Australia
Fil: Kato, Tomomichi. Hokkaido University. Research Faculty of Agriculture; Japón
Fil: Buchmann, Nina. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Billesbach, D.P. University of Nebraska. Department of Biological Systems Engineering and School of Natural Resources; Estados Unidos
Fil: Beringer, Jason. University of Western Australia. School of Agriculture and Environment; Australia
Fil: Wolf, Sebastian. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Papuga, Shirley A. University of Arizona. School of Natural Resources and the Environment; Estados Unidos
Fil: Wohlfahrt, Georg. University of Innsbruck. Institute of Ecology; Austria
Fil: Montagnani, Leonardo. Free University of Bolzano. Faculty of Science and Technology; Italia
Fil: Ardö, Jonas. Lund University. Physical Geography and Ecosystem Science; Suecia
Fil: Paul-Limoges, Eugénie. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Emmel, Carmen. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Hörtnagl, Lukas. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Sachs, Torsten. GFZ German Research Centre for Geosciences, Section Remote Sensing; Alemania
Fil: Gruening, Carsten. European Commission, Joint Research Centre; Italia
Fil: Gioli, Beniamino. National Research Council. Institute of Biometeorology; Italia
Fil: López-Ballesteros, Ana. University of Granada. Faculty of Sciences. Department of Ecology; España
Fil: Steinbrecher, Rainer. Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU); Alemania
Fil: Gielen, Bert. University of Antwerp. Department of Biology. Centre of Excellence PLECO; Bélgica - Fuente
- Journal of hydrology 553 : 508-526. (October 2017)
- Materia
-
Evapotranspiración
Landsat
Imágenes por Satélites
Datos Atmosféricos
Evapotranspiration
Satellite Imagery
Atmospheric Data - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/1551
Ver los metadatos del registro completo
id |
INTADig_af682e0d6a0302c2b07783a632cfef0c |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/1551 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion methodYunjun, YaoShunlin, LiangYuhu, ZhangJiquan, ChenXianglan, LiKun, JiaXiaotong, ZhangFisher, Joshua B.Xuanyu, WangLilin, ZhangJia, XuChangliang, ShaoPosse Beaulieu, GabrielaYingnian, LiMagliulo, VincenzoVarlagin, AndrejMoors, Eddy J.Boike, JuliaMacfarlane, CraigKato, TomomichiBuchmann, NinaBillesbach, D.P.Beringer, JasonWolf, SebastianPapuga, Shirley A.Wohlfahrt, GeorgMontagnani, LeonardoArdö, JonasPaul-Limoges, EugénieEmmel, CarmenHörtnagl, LukasSachs, TorstenGruening, CarstenGioli, BeniaminoLópez-Ballesteros, AnaSteinbrecher, RainerGielen, BertEvapotranspiraciónLandsatImágenes por SatélitesDatos AtmosféricosEvapotranspirationSatellite ImageryAtmospheric DataEstimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models.Inst. de Clima y AguaFil: Yunjun, Yao. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Shunlin, Liang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Xianglan, Li. Beijing Normal University. College of Global Change and Earth System Science; ChinaFil: Yuhu, Zhang. Capital Normal University. College of Resource Environment and Tourism; ChinaFil: Jiquan, Chen. Michigan State University. CGCEO/Geography; Estados UnidosFil: Kun, Jia. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Xiaotong, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Fisher, Joshua B. California Institute of Technology. Jet Propulsion Laboratory; Estados UnidosFil: Xuanyu, Wang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Lilin, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Jia, Xu. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Changliang, Shao. Michigan State University. CGCEO/Geography; Estados UnidosFil: Posse Beaulieu, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Yingnian, Li. Chinese Academy of Sciences. Northwest Institute of Plateau Biology; ChinaFil: Magliulo, Vincenzo. Consiglio Nazionale delle Ricerche. Institute of Mediterranean Forest and Agricultural Systems; ItaliaFil: Varlagin, Andrej. Russian Academy of Sciences. A.N. Severtsov Institute of Ecology and Evolution; RusiaFil: Moors, Eddy J. Wageningen University and Research, Wageningen Environmental Research; HolandaFil: Boike, Julia. Alfred Wegener Institute for Polar and Marine Research; AlemaniaFil: Macfarlane, Craig. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water; AustraliaFil: Kato, Tomomichi. Hokkaido University. Research Faculty of Agriculture; JapónFil: Buchmann, Nina. ETH Zurich. Department of Environmental Systems Science; SuizaFil: Billesbach, D.P. University of Nebraska. Department of Biological Systems Engineering and School of Natural Resources; Estados UnidosFil: Beringer, Jason. University of Western Australia. School of Agriculture and Environment; AustraliaFil: Wolf, Sebastian. ETH Zurich. Department of Environmental Systems Science; SuizaFil: Papuga, Shirley A. University of Arizona. School of Natural Resources and the Environment; Estados UnidosFil: Wohlfahrt, Georg. University of Innsbruck. Institute of Ecology; AustriaFil: Montagnani, Leonardo. Free University of Bolzano. Faculty of Science and Technology; ItaliaFil: Ardö, Jonas. Lund University. Physical Geography and Ecosystem Science; SueciaFil: Paul-Limoges, Eugénie. ETH Zurich. Department of Environmental Systems Science; SuizaFil: Emmel, Carmen. ETH Zurich. Department of Environmental Systems Science; SuizaFil: Hörtnagl, Lukas. ETH Zurich. Department of Environmental Systems Science; SuizaFil: Sachs, Torsten. GFZ German Research Centre for Geosciences, Section Remote Sensing; AlemaniaFil: Gruening, Carsten. European Commission, Joint Research Centre; ItaliaFil: Gioli, Beniamino. National Research Council. Institute of Biometeorology; ItaliaFil: López-Ballesteros, Ana. University of Granada. Faculty of Sciences. Department of Ecology; EspañaFil: Steinbrecher, Rainer. Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU); AlemaniaFil: Gielen, Bert. University of Antwerp. Department of Biology. Centre of Excellence PLECO; Bélgica2017-10-20T14:13:49Z2017-10-20T14:13:49Z2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/1551https://www.sciencedirect.com/science/article/pii/S00221694173053950022-1694https://doi.org/10.1016/j.jhydrol.2017.08.013Journal of hydrology 553 : 508-526. (October 2017)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:12Zoai:localhost:20.500.12123/1551instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:13.241INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method |
title |
Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method |
spellingShingle |
Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method Yunjun, Yao Evapotranspiración Landsat Imágenes por Satélites Datos Atmosféricos Evapotranspiration Satellite Imagery Atmospheric Data |
title_short |
Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method |
title_full |
Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method |
title_fullStr |
Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method |
title_full_unstemmed |
Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method |
title_sort |
Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method |
dc.creator.none.fl_str_mv |
Yunjun, Yao Shunlin, Liang Yuhu, Zhang Jiquan, Chen Xianglan, Li Kun, Jia Xiaotong, Zhang Fisher, Joshua B. Xuanyu, Wang Lilin, Zhang Jia, Xu Changliang, Shao Posse Beaulieu, Gabriela Yingnian, Li Magliulo, Vincenzo Varlagin, Andrej Moors, Eddy J. Boike, Julia Macfarlane, Craig Kato, Tomomichi Buchmann, Nina Billesbach, D.P. Beringer, Jason Wolf, Sebastian Papuga, Shirley A. Wohlfahrt, Georg Montagnani, Leonardo Ardö, Jonas Paul-Limoges, Eugénie Emmel, Carmen Hörtnagl, Lukas Sachs, Torsten Gruening, Carsten Gioli, Beniamino López-Ballesteros, Ana Steinbrecher, Rainer Gielen, Bert |
author |
Yunjun, Yao |
author_facet |
Yunjun, Yao Shunlin, Liang Yuhu, Zhang Jiquan, Chen Xianglan, Li Kun, Jia Xiaotong, Zhang Fisher, Joshua B. Xuanyu, Wang Lilin, Zhang Jia, Xu Changliang, Shao Posse Beaulieu, Gabriela Yingnian, Li Magliulo, Vincenzo Varlagin, Andrej Moors, Eddy J. Boike, Julia Macfarlane, Craig Kato, Tomomichi Buchmann, Nina Billesbach, D.P. Beringer, Jason Wolf, Sebastian Papuga, Shirley A. Wohlfahrt, Georg Montagnani, Leonardo Ardö, Jonas Paul-Limoges, Eugénie Emmel, Carmen Hörtnagl, Lukas Sachs, Torsten Gruening, Carsten Gioli, Beniamino López-Ballesteros, Ana Steinbrecher, Rainer Gielen, Bert |
author_role |
author |
author2 |
Shunlin, Liang Yuhu, Zhang Jiquan, Chen Xianglan, Li Kun, Jia Xiaotong, Zhang Fisher, Joshua B. Xuanyu, Wang Lilin, Zhang Jia, Xu Changliang, Shao Posse Beaulieu, Gabriela Yingnian, Li Magliulo, Vincenzo Varlagin, Andrej Moors, Eddy J. Boike, Julia Macfarlane, Craig Kato, Tomomichi Buchmann, Nina Billesbach, D.P. Beringer, Jason Wolf, Sebastian Papuga, Shirley A. Wohlfahrt, Georg Montagnani, Leonardo Ardö, Jonas Paul-Limoges, Eugénie Emmel, Carmen Hörtnagl, Lukas Sachs, Torsten Gruening, Carsten Gioli, Beniamino López-Ballesteros, Ana Steinbrecher, Rainer Gielen, Bert |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Evapotranspiración Landsat Imágenes por Satélites Datos Atmosféricos Evapotranspiration Satellite Imagery Atmospheric Data |
topic |
Evapotranspiración Landsat Imágenes por Satélites Datos Atmosféricos Evapotranspiration Satellite Imagery Atmospheric Data |
dc.description.none.fl_txt_mv |
Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models. Inst. de Clima y Agua Fil: Yunjun, Yao. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Shunlin, Liang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Xianglan, Li. Beijing Normal University. College of Global Change and Earth System Science; China Fil: Yuhu, Zhang. Capital Normal University. College of Resource Environment and Tourism; China Fil: Jiquan, Chen. Michigan State University. CGCEO/Geography; Estados Unidos Fil: Kun, Jia. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Xiaotong, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Fisher, Joshua B. California Institute of Technology. Jet Propulsion Laboratory; Estados Unidos Fil: Xuanyu, Wang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Lilin, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Jia, Xu. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Changliang, Shao. Michigan State University. CGCEO/Geography; Estados Unidos Fil: Posse Beaulieu, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: Yingnian, Li. Chinese Academy of Sciences. Northwest Institute of Plateau Biology; China Fil: Magliulo, Vincenzo. Consiglio Nazionale delle Ricerche. Institute of Mediterranean Forest and Agricultural Systems; Italia Fil: Varlagin, Andrej. Russian Academy of Sciences. A.N. Severtsov Institute of Ecology and Evolution; Rusia Fil: Moors, Eddy J. Wageningen University and Research, Wageningen Environmental Research; Holanda Fil: Boike, Julia. Alfred Wegener Institute for Polar and Marine Research; Alemania Fil: Macfarlane, Craig. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water; Australia Fil: Kato, Tomomichi. Hokkaido University. Research Faculty of Agriculture; Japón Fil: Buchmann, Nina. ETH Zurich. Department of Environmental Systems Science; Suiza Fil: Billesbach, D.P. University of Nebraska. Department of Biological Systems Engineering and School of Natural Resources; Estados Unidos Fil: Beringer, Jason. University of Western Australia. School of Agriculture and Environment; Australia Fil: Wolf, Sebastian. ETH Zurich. Department of Environmental Systems Science; Suiza Fil: Papuga, Shirley A. University of Arizona. School of Natural Resources and the Environment; Estados Unidos Fil: Wohlfahrt, Georg. University of Innsbruck. Institute of Ecology; Austria Fil: Montagnani, Leonardo. Free University of Bolzano. Faculty of Science and Technology; Italia Fil: Ardö, Jonas. Lund University. Physical Geography and Ecosystem Science; Suecia Fil: Paul-Limoges, Eugénie. ETH Zurich. Department of Environmental Systems Science; Suiza Fil: Emmel, Carmen. ETH Zurich. Department of Environmental Systems Science; Suiza Fil: Hörtnagl, Lukas. ETH Zurich. Department of Environmental Systems Science; Suiza Fil: Sachs, Torsten. GFZ German Research Centre for Geosciences, Section Remote Sensing; Alemania Fil: Gruening, Carsten. European Commission, Joint Research Centre; Italia Fil: Gioli, Beniamino. National Research Council. Institute of Biometeorology; Italia Fil: López-Ballesteros, Ana. University of Granada. Faculty of Sciences. Department of Ecology; España Fil: Steinbrecher, Rainer. Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU); Alemania Fil: Gielen, Bert. University of Antwerp. Department of Biology. Centre of Excellence PLECO; Bélgica |
description |
Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-20T14:13:49Z 2017-10-20T14:13:49Z 2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/1551 https://www.sciencedirect.com/science/article/pii/S0022169417305395 0022-1694 https://doi.org/10.1016/j.jhydrol.2017.08.013 |
url |
http://hdl.handle.net/20.500.12123/1551 https://www.sciencedirect.com/science/article/pii/S0022169417305395 https://doi.org/10.1016/j.jhydrol.2017.08.013 |
identifier_str_mv |
0022-1694 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Journal of hydrology 553 : 508-526. (October 2017) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619118623326208 |
score |
12.559606 |