Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method

Autores
Yunjun, Yao; Shunlin, Liang; Yuhu, Zhang; Jiquan, Chen; Xianglan, Li; Kun, Jia; Xiaotong, Zhang; Fisher, Joshua B.; Xuanyu, Wang; Lilin, Zhang; Jia, Xu; Changliang, Shao; Posse Beaulieu, Gabriela; Yingnian, Li; Magliulo, Vincenzo; Varlagin, Andrej; Moors, Eddy J.; Boike, Julia; Macfarlane, Craig; Kato, Tomomichi; Buchmann, Nina; Billesbach, D.P.; Beringer, Jason; Wolf, Sebastian; Papuga, Shirley A.; Wohlfahrt, Georg; Montagnani, Leonardo; Ardö, Jonas; Paul-Limoges, Eugénie; Emmel, Carmen; Hörtnagl, Lukas; Sachs, Torsten; Gruening, Carsten; Gioli, Beniamino; López-Ballesteros, Ana; Steinbrecher, Rainer; Gielen, Bert
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models.
Inst. de Clima y Agua
Fil: Yunjun, Yao. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Shunlin, Liang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Xianglan, Li. Beijing Normal University. College of Global Change and Earth System Science; China
Fil: Yuhu, Zhang. Capital Normal University. College of Resource Environment and Tourism; China
Fil: Jiquan, Chen. Michigan State University. CGCEO/Geography; Estados Unidos
Fil: Kun, Jia. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Xiaotong, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Fisher, Joshua B. California Institute of Technology. Jet Propulsion Laboratory; Estados Unidos
Fil: Xuanyu, Wang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Lilin, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Jia, Xu. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Changliang, Shao. Michigan State University. CGCEO/Geography; Estados Unidos
Fil: Posse Beaulieu, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Yingnian, Li. Chinese Academy of Sciences. Northwest Institute of Plateau Biology; China
Fil: Magliulo, Vincenzo. Consiglio Nazionale delle Ricerche. Institute of Mediterranean Forest and Agricultural Systems; Italia
Fil: Varlagin, Andrej. Russian Academy of Sciences. A.N. Severtsov Institute of Ecology and Evolution; Rusia
Fil: Moors, Eddy J. Wageningen University and Research, Wageningen Environmental Research; Holanda
Fil: Boike, Julia. Alfred Wegener Institute for Polar and Marine Research; Alemania
Fil: Macfarlane, Craig. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water; Australia
Fil: Kato, Tomomichi. Hokkaido University. Research Faculty of Agriculture; Japón
Fil: Buchmann, Nina. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Billesbach, D.P. University of Nebraska. Department of Biological Systems Engineering and School of Natural Resources; Estados Unidos
Fil: Beringer, Jason. University of Western Australia. School of Agriculture and Environment; Australia
Fil: Wolf, Sebastian. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Papuga, Shirley A. University of Arizona. School of Natural Resources and the Environment; Estados Unidos
Fil: Wohlfahrt, Georg. University of Innsbruck. Institute of Ecology; Austria
Fil: Montagnani, Leonardo. Free University of Bolzano. Faculty of Science and Technology; Italia
Fil: Ardö, Jonas. Lund University. Physical Geography and Ecosystem Science; Suecia
Fil: Paul-Limoges, Eugénie. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Emmel, Carmen. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Hörtnagl, Lukas. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Sachs, Torsten. GFZ German Research Centre for Geosciences, Section Remote Sensing; Alemania
Fil: Gruening, Carsten. European Commission, Joint Research Centre; Italia
Fil: Gioli, Beniamino. National Research Council. Institute of Biometeorology; Italia
Fil: López-Ballesteros, Ana. University of Granada. Faculty of Sciences. Department of Ecology; España
Fil: Steinbrecher, Rainer. Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU); Alemania
Fil: Gielen, Bert. University of Antwerp. Department of Biology. Centre of Excellence PLECO; Bélgica
Fuente
Journal of hydrology 553 : 508-526. (October 2017)
Materia
Evapotranspiración
Landsat
Imágenes por Satélites
Datos Atmosféricos
Evapotranspiration
Satellite Imagery
Atmospheric Data
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/1551

id INTADig_af682e0d6a0302c2b07783a632cfef0c
oai_identifier_str oai:localhost:20.500.12123/1551
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion methodYunjun, YaoShunlin, LiangYuhu, ZhangJiquan, ChenXianglan, LiKun, JiaXiaotong, ZhangFisher, Joshua B.Xuanyu, WangLilin, ZhangJia, XuChangliang, ShaoPosse Beaulieu, GabrielaYingnian, LiMagliulo, VincenzoVarlagin, AndrejMoors, Eddy J.Boike, JuliaMacfarlane, CraigKato, TomomichiBuchmann, NinaBillesbach, D.P.Beringer, JasonWolf, SebastianPapuga, Shirley A.Wohlfahrt, GeorgMontagnani, LeonardoArdö, JonasPaul-Limoges, EugénieEmmel, CarmenHörtnagl, LukasSachs, TorstenGruening, CarstenGioli, BeniaminoLópez-Ballesteros, AnaSteinbrecher, RainerGielen, BertEvapotranspiraciónLandsatImágenes por SatélitesDatos AtmosféricosEvapotranspirationSatellite ImageryAtmospheric DataEstimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models.Inst. de Clima y AguaFil: Yunjun, Yao. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Shunlin, Liang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Xianglan, Li. Beijing Normal University. College of Global Change and Earth System Science; ChinaFil: Yuhu, Zhang. Capital Normal University. College of Resource Environment and Tourism; ChinaFil: Jiquan, Chen. Michigan State University. CGCEO/Geography; Estados UnidosFil: Kun, Jia. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Xiaotong, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Fisher, Joshua B. California Institute of Technology. Jet Propulsion Laboratory; Estados UnidosFil: Xuanyu, Wang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Lilin, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Jia, Xu. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; ChinaFil: Changliang, Shao. Michigan State University. CGCEO/Geography; Estados UnidosFil: Posse Beaulieu, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Yingnian, Li. Chinese Academy of Sciences. Northwest Institute of Plateau Biology; ChinaFil: Magliulo, Vincenzo. Consiglio Nazionale delle Ricerche. Institute of Mediterranean Forest and Agricultural Systems; ItaliaFil: Varlagin, Andrej. Russian Academy of Sciences. A.N. Severtsov Institute of Ecology and Evolution; RusiaFil: Moors, Eddy J. Wageningen University and Research, Wageningen Environmental Research; HolandaFil: Boike, Julia. Alfred Wegener Institute for Polar and Marine Research; AlemaniaFil: Macfarlane, Craig. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water; AustraliaFil: Kato, Tomomichi. Hokkaido University. Research Faculty of Agriculture; JapónFil: Buchmann, Nina. ETH Zurich. Department of Environmental Systems Science; SuizaFil: Billesbach, D.P. University of Nebraska. Department of Biological Systems Engineering and School of Natural Resources; Estados UnidosFil: Beringer, Jason. University of Western Australia. School of Agriculture and Environment; AustraliaFil: Wolf, Sebastian. ETH Zurich. Department of Environmental Systems Science; SuizaFil: Papuga, Shirley A. University of Arizona. School of Natural Resources and the Environment; Estados UnidosFil: Wohlfahrt, Georg. University of Innsbruck. Institute of Ecology; AustriaFil: Montagnani, Leonardo. Free University of Bolzano. Faculty of Science and Technology; ItaliaFil: Ardö, Jonas. Lund University. Physical Geography and Ecosystem Science; SueciaFil: Paul-Limoges, Eugénie. ETH Zurich. Department of Environmental Systems Science; SuizaFil: Emmel, Carmen. ETH Zurich. Department of Environmental Systems Science; SuizaFil: Hörtnagl, Lukas. ETH Zurich. Department of Environmental Systems Science; SuizaFil: Sachs, Torsten. GFZ German Research Centre for Geosciences, Section Remote Sensing; AlemaniaFil: Gruening, Carsten. European Commission, Joint Research Centre; ItaliaFil: Gioli, Beniamino. National Research Council. Institute of Biometeorology; ItaliaFil: López-Ballesteros, Ana. University of Granada. Faculty of Sciences. Department of Ecology; EspañaFil: Steinbrecher, Rainer. Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU); AlemaniaFil: Gielen, Bert. University of Antwerp. Department of Biology. Centre of Excellence PLECO; Bélgica2017-10-20T14:13:49Z2017-10-20T14:13:49Z2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/1551https://www.sciencedirect.com/science/article/pii/S00221694173053950022-1694https://doi.org/10.1016/j.jhydrol.2017.08.013Journal of hydrology 553 : 508-526. (October 2017)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:12Zoai:localhost:20.500.12123/1551instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:13.241INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
title Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
spellingShingle Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
Yunjun, Yao
Evapotranspiración
Landsat
Imágenes por Satélites
Datos Atmosféricos
Evapotranspiration
Satellite Imagery
Atmospheric Data
title_short Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
title_full Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
title_fullStr Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
title_full_unstemmed Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
title_sort Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
dc.creator.none.fl_str_mv Yunjun, Yao
Shunlin, Liang
Yuhu, Zhang
Jiquan, Chen
Xianglan, Li
Kun, Jia
Xiaotong, Zhang
Fisher, Joshua B.
Xuanyu, Wang
Lilin, Zhang
Jia, Xu
Changliang, Shao
Posse Beaulieu, Gabriela
Yingnian, Li
Magliulo, Vincenzo
Varlagin, Andrej
Moors, Eddy J.
Boike, Julia
Macfarlane, Craig
Kato, Tomomichi
Buchmann, Nina
Billesbach, D.P.
Beringer, Jason
Wolf, Sebastian
Papuga, Shirley A.
Wohlfahrt, Georg
Montagnani, Leonardo
Ardö, Jonas
Paul-Limoges, Eugénie
Emmel, Carmen
Hörtnagl, Lukas
Sachs, Torsten
Gruening, Carsten
Gioli, Beniamino
López-Ballesteros, Ana
Steinbrecher, Rainer
Gielen, Bert
author Yunjun, Yao
author_facet Yunjun, Yao
Shunlin, Liang
Yuhu, Zhang
Jiquan, Chen
Xianglan, Li
Kun, Jia
Xiaotong, Zhang
Fisher, Joshua B.
Xuanyu, Wang
Lilin, Zhang
Jia, Xu
Changliang, Shao
Posse Beaulieu, Gabriela
Yingnian, Li
Magliulo, Vincenzo
Varlagin, Andrej
Moors, Eddy J.
Boike, Julia
Macfarlane, Craig
Kato, Tomomichi
Buchmann, Nina
Billesbach, D.P.
Beringer, Jason
Wolf, Sebastian
Papuga, Shirley A.
Wohlfahrt, Georg
Montagnani, Leonardo
Ardö, Jonas
Paul-Limoges, Eugénie
Emmel, Carmen
Hörtnagl, Lukas
Sachs, Torsten
Gruening, Carsten
Gioli, Beniamino
López-Ballesteros, Ana
Steinbrecher, Rainer
Gielen, Bert
author_role author
author2 Shunlin, Liang
Yuhu, Zhang
Jiquan, Chen
Xianglan, Li
Kun, Jia
Xiaotong, Zhang
Fisher, Joshua B.
Xuanyu, Wang
Lilin, Zhang
Jia, Xu
Changliang, Shao
Posse Beaulieu, Gabriela
Yingnian, Li
Magliulo, Vincenzo
Varlagin, Andrej
Moors, Eddy J.
Boike, Julia
Macfarlane, Craig
Kato, Tomomichi
Buchmann, Nina
Billesbach, D.P.
Beringer, Jason
Wolf, Sebastian
Papuga, Shirley A.
Wohlfahrt, Georg
Montagnani, Leonardo
Ardö, Jonas
Paul-Limoges, Eugénie
Emmel, Carmen
Hörtnagl, Lukas
Sachs, Torsten
Gruening, Carsten
Gioli, Beniamino
López-Ballesteros, Ana
Steinbrecher, Rainer
Gielen, Bert
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Evapotranspiración
Landsat
Imágenes por Satélites
Datos Atmosféricos
Evapotranspiration
Satellite Imagery
Atmospheric Data
topic Evapotranspiración
Landsat
Imágenes por Satélites
Datos Atmosféricos
Evapotranspiration
Satellite Imagery
Atmospheric Data
dc.description.none.fl_txt_mv Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models.
Inst. de Clima y Agua
Fil: Yunjun, Yao. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Shunlin, Liang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Xianglan, Li. Beijing Normal University. College of Global Change and Earth System Science; China
Fil: Yuhu, Zhang. Capital Normal University. College of Resource Environment and Tourism; China
Fil: Jiquan, Chen. Michigan State University. CGCEO/Geography; Estados Unidos
Fil: Kun, Jia. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Xiaotong, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Fisher, Joshua B. California Institute of Technology. Jet Propulsion Laboratory; Estados Unidos
Fil: Xuanyu, Wang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Lilin, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Jia, Xu. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
Fil: Changliang, Shao. Michigan State University. CGCEO/Geography; Estados Unidos
Fil: Posse Beaulieu, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Yingnian, Li. Chinese Academy of Sciences. Northwest Institute of Plateau Biology; China
Fil: Magliulo, Vincenzo. Consiglio Nazionale delle Ricerche. Institute of Mediterranean Forest and Agricultural Systems; Italia
Fil: Varlagin, Andrej. Russian Academy of Sciences. A.N. Severtsov Institute of Ecology and Evolution; Rusia
Fil: Moors, Eddy J. Wageningen University and Research, Wageningen Environmental Research; Holanda
Fil: Boike, Julia. Alfred Wegener Institute for Polar and Marine Research; Alemania
Fil: Macfarlane, Craig. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water; Australia
Fil: Kato, Tomomichi. Hokkaido University. Research Faculty of Agriculture; Japón
Fil: Buchmann, Nina. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Billesbach, D.P. University of Nebraska. Department of Biological Systems Engineering and School of Natural Resources; Estados Unidos
Fil: Beringer, Jason. University of Western Australia. School of Agriculture and Environment; Australia
Fil: Wolf, Sebastian. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Papuga, Shirley A. University of Arizona. School of Natural Resources and the Environment; Estados Unidos
Fil: Wohlfahrt, Georg. University of Innsbruck. Institute of Ecology; Austria
Fil: Montagnani, Leonardo. Free University of Bolzano. Faculty of Science and Technology; Italia
Fil: Ardö, Jonas. Lund University. Physical Geography and Ecosystem Science; Suecia
Fil: Paul-Limoges, Eugénie. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Emmel, Carmen. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Hörtnagl, Lukas. ETH Zurich. Department of Environmental Systems Science; Suiza
Fil: Sachs, Torsten. GFZ German Research Centre for Geosciences, Section Remote Sensing; Alemania
Fil: Gruening, Carsten. European Commission, Joint Research Centre; Italia
Fil: Gioli, Beniamino. National Research Council. Institute of Biometeorology; Italia
Fil: López-Ballesteros, Ana. University of Granada. Faculty of Sciences. Department of Ecology; España
Fil: Steinbrecher, Rainer. Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU); Alemania
Fil: Gielen, Bert. University of Antwerp. Department of Biology. Centre of Excellence PLECO; Bélgica
description Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-20T14:13:49Z
2017-10-20T14:13:49Z
2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/1551
https://www.sciencedirect.com/science/article/pii/S0022169417305395
0022-1694
https://doi.org/10.1016/j.jhydrol.2017.08.013
url http://hdl.handle.net/20.500.12123/1551
https://www.sciencedirect.com/science/article/pii/S0022169417305395
https://doi.org/10.1016/j.jhydrol.2017.08.013
identifier_str_mv 0022-1694
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Journal of hydrology 553 : 508-526. (October 2017)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619118623326208
score 12.559606