Better estimates of soil carbon from geographical data: a revised global approach
- Autores
- Duarte Guardia, Sandra; Peri, Pablo Luis; Amelung, Wulf; Sheil, Douglas; Laffan, Shawn W.; Borchard, Nils; Bird, Michael I.; Dieleman, Wouter; Pepper, David A.; Zutta, Brian; Jobbagy Gampel, Esteban Gabriel; Silva, Lucas C. R.; Bonser, Stephen P.; Berhongaray, Gonzalo; Piñeiro, Gervasio; Martinez, Maria Jose; Cowie, Annette L.; Ladd, Brenton
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha−1) and tundra (310 ± 15.3 t ha−1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha−1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 - 221 t ha−1), tropical and subtropical forests (94 - 143 t ha−1) and grasslands (99-104 t ha−1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes.
EEA Santa Cruz
Fil: Duarte Guardia, Sandra. Universidad Nacional de la Patagonia Austral; Argentina
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Amelung, Wulf. University of Bonn. Soil Science and Soil Ecology. Institute of Crop Science and Resource Conservation (INRES); Alemania
Fil: Sheil, Douglas. Norwegian University of Life Sciences. Faculty of Environmental Sciences and Natural Resource Management; Noruega. Jalan Cifor Rawajaha. Center for International Forestry Research (CIFOR); Indonesia
Fil: Borchard, Nils. Forschungszentrum Jülich GmbH. Agrosphere Institute (IBG-3); Alemania. Jalan Cifor Rawajaha. Center for International Forestry Research (CIFOR); Indonesia. Ruhr-University Bochum, Institute of Geography, Soil Science/Soil Ecology; Alemania. Plant Production Natural Resources Institute Finland (Luke); Finlandia
Fil: Laffan, Shawn W. University of New South Wales. School of Biological, Earth and Environmental Sciences; Australia
Fil: Bird, Michael I. James Cook University. College of Science, Technology and Engineering and Centre for Tropical Environmental and Sustainability Science; Australia
Fil: Dieleman, Wouter. James Cook University. College of Science, Technology and Engineering and Centre for Tropical Environmental and Sustainability Science; Australia
Fil: Pepper, David A. University of New South Wales. School of Biological, Earth and Environmental Sciences; Australia. University of Canberra. Institute for Applied Ecology; Australia
Fil: Zutta, Brian. Perú. Ministerio del Ambiente. Programa Nacional de Conservación de Bosques; Perú
Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis; Argentina
Fil: Silva, Lucas C. R. University of Oregon. Institute of Ecology & Evolution. Department of Geography. Environmental Studies Program; Estados Unidos
Fil: Bonser, Stephen P. University of New South Wales. School of Biological, Earth and Environmental Sciences. Evolution and Ecology Research Centre; Australia
Fil: Berhongaray, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral.Facultad de Ciencias Agrarias; Argentina
Fil: Piñeiro, Gervasio. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Ecología. Laboratorio de Análisis Regional y Teledetección; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de la República. Facultad de Agronomia; Uruguay
Fil: Martinez, Maria Jose. Universidad Científica del Sur. Escuela de Agroforestería; Perú
Fil: Cowie, Annette L. NSW Department of Primary Industries; Australia. University of New England. School of Environmental and Rural Science; Australia
Fil: Ladd, Brenton. Universidad Científica del Sur. Escuela de Agroforestería; Peru. UNSW Australia. School of Biological. Earth and Environmental Sciences, Evolution and Ecology Research Centre; Australia - Fuente
- Mitigation and Adaptation Strategies for Global Change : 1–18 (May 2018)
- Materia
-
Clima
Cambio Climático
Suelo
Carbono
Sistemas de Información Geográfica
Climate
Climate Change
Soil
Carbon
Geographical Information Systems - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/2925
Ver los metadatos del registro completo
id |
INTADig_a7a4b8362268da6c64e8c537b7e2de4d |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/2925 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Better estimates of soil carbon from geographical data: a revised global approachDuarte Guardia, SandraPeri, Pablo LuisAmelung, WulfSheil, DouglasLaffan, Shawn W.Borchard, NilsBird, Michael I.Dieleman, WouterPepper, David A.Zutta, BrianJobbagy Gampel, Esteban GabrielSilva, Lucas C. R.Bonser, Stephen P.Berhongaray, GonzaloPiñeiro, GervasioMartinez, Maria JoseCowie, Annette L.Ladd, BrentonClimaCambio ClimáticoSueloCarbonoSistemas de Información GeográficaClimateClimate ChangeSoilCarbonGeographical Information SystemsSoils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha−1) and tundra (310 ± 15.3 t ha−1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha−1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 - 221 t ha−1), tropical and subtropical forests (94 - 143 t ha−1) and grasslands (99-104 t ha−1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes.EEA Santa CruzFil: Duarte Guardia, Sandra. Universidad Nacional de la Patagonia Austral; ArgentinaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Amelung, Wulf. University of Bonn. Soil Science and Soil Ecology. Institute of Crop Science and Resource Conservation (INRES); AlemaniaFil: Sheil, Douglas. Norwegian University of Life Sciences. Faculty of Environmental Sciences and Natural Resource Management; Noruega. Jalan Cifor Rawajaha. Center for International Forestry Research (CIFOR); IndonesiaFil: Borchard, Nils. Forschungszentrum Jülich GmbH. Agrosphere Institute (IBG-3); Alemania. Jalan Cifor Rawajaha. Center for International Forestry Research (CIFOR); Indonesia. Ruhr-University Bochum, Institute of Geography, Soil Science/Soil Ecology; Alemania. Plant Production Natural Resources Institute Finland (Luke); FinlandiaFil: Laffan, Shawn W. University of New South Wales. School of Biological, Earth and Environmental Sciences; AustraliaFil: Bird, Michael I. James Cook University. College of Science, Technology and Engineering and Centre for Tropical Environmental and Sustainability Science; AustraliaFil: Dieleman, Wouter. James Cook University. College of Science, Technology and Engineering and Centre for Tropical Environmental and Sustainability Science; AustraliaFil: Pepper, David A. University of New South Wales. School of Biological, Earth and Environmental Sciences; Australia. University of Canberra. Institute for Applied Ecology; AustraliaFil: Zutta, Brian. Perú. Ministerio del Ambiente. Programa Nacional de Conservación de Bosques; PerúFil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis; ArgentinaFil: Silva, Lucas C. R. University of Oregon. Institute of Ecology & Evolution. Department of Geography. Environmental Studies Program; Estados UnidosFil: Bonser, Stephen P. University of New South Wales. School of Biological, Earth and Environmental Sciences. Evolution and Ecology Research Centre; AustraliaFil: Berhongaray, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral.Facultad de Ciencias Agrarias; ArgentinaFil: Piñeiro, Gervasio. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Ecología. Laboratorio de Análisis Regional y Teledetección; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de la República. Facultad de Agronomia; UruguayFil: Martinez, Maria Jose. Universidad Científica del Sur. Escuela de Agroforestería; PerúFil: Cowie, Annette L. NSW Department of Primary Industries; Australia. University of New England. School of Environmental and Rural Science; AustraliaFil: Ladd, Brenton. Universidad Científica del Sur. Escuela de Agroforestería; Peru. UNSW Australia. School of Biological. Earth and Environmental Sciences, Evolution and Ecology Research Centre; Australia2018-07-31T12:18:13Z2018-07-31T12:18:13Z2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://link.springer.com/article/10.1007/s11027-018-9815-yhttp://hdl.handle.net/20.500.12123/29251381-23861573-1596https://doi.org/10.1007/s11027-018-9815-yMitigation and Adaptation Strategies for Global Change : 1–18 (May 2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:22Zoai:localhost:20.500.12123/2925instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:23.099INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Better estimates of soil carbon from geographical data: a revised global approach |
title |
Better estimates of soil carbon from geographical data: a revised global approach |
spellingShingle |
Better estimates of soil carbon from geographical data: a revised global approach Duarte Guardia, Sandra Clima Cambio Climático Suelo Carbono Sistemas de Información Geográfica Climate Climate Change Soil Carbon Geographical Information Systems |
title_short |
Better estimates of soil carbon from geographical data: a revised global approach |
title_full |
Better estimates of soil carbon from geographical data: a revised global approach |
title_fullStr |
Better estimates of soil carbon from geographical data: a revised global approach |
title_full_unstemmed |
Better estimates of soil carbon from geographical data: a revised global approach |
title_sort |
Better estimates of soil carbon from geographical data: a revised global approach |
dc.creator.none.fl_str_mv |
Duarte Guardia, Sandra Peri, Pablo Luis Amelung, Wulf Sheil, Douglas Laffan, Shawn W. Borchard, Nils Bird, Michael I. Dieleman, Wouter Pepper, David A. Zutta, Brian Jobbagy Gampel, Esteban Gabriel Silva, Lucas C. R. Bonser, Stephen P. Berhongaray, Gonzalo Piñeiro, Gervasio Martinez, Maria Jose Cowie, Annette L. Ladd, Brenton |
author |
Duarte Guardia, Sandra |
author_facet |
Duarte Guardia, Sandra Peri, Pablo Luis Amelung, Wulf Sheil, Douglas Laffan, Shawn W. Borchard, Nils Bird, Michael I. Dieleman, Wouter Pepper, David A. Zutta, Brian Jobbagy Gampel, Esteban Gabriel Silva, Lucas C. R. Bonser, Stephen P. Berhongaray, Gonzalo Piñeiro, Gervasio Martinez, Maria Jose Cowie, Annette L. Ladd, Brenton |
author_role |
author |
author2 |
Peri, Pablo Luis Amelung, Wulf Sheil, Douglas Laffan, Shawn W. Borchard, Nils Bird, Michael I. Dieleman, Wouter Pepper, David A. Zutta, Brian Jobbagy Gampel, Esteban Gabriel Silva, Lucas C. R. Bonser, Stephen P. Berhongaray, Gonzalo Piñeiro, Gervasio Martinez, Maria Jose Cowie, Annette L. Ladd, Brenton |
author2_role |
author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Clima Cambio Climático Suelo Carbono Sistemas de Información Geográfica Climate Climate Change Soil Carbon Geographical Information Systems |
topic |
Clima Cambio Climático Suelo Carbono Sistemas de Información Geográfica Climate Climate Change Soil Carbon Geographical Information Systems |
dc.description.none.fl_txt_mv |
Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha−1) and tundra (310 ± 15.3 t ha−1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha−1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 - 221 t ha−1), tropical and subtropical forests (94 - 143 t ha−1) and grasslands (99-104 t ha−1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes. EEA Santa Cruz Fil: Duarte Guardia, Sandra. Universidad Nacional de la Patagonia Austral; Argentina Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Amelung, Wulf. University of Bonn. Soil Science and Soil Ecology. Institute of Crop Science and Resource Conservation (INRES); Alemania Fil: Sheil, Douglas. Norwegian University of Life Sciences. Faculty of Environmental Sciences and Natural Resource Management; Noruega. Jalan Cifor Rawajaha. Center for International Forestry Research (CIFOR); Indonesia Fil: Borchard, Nils. Forschungszentrum Jülich GmbH. Agrosphere Institute (IBG-3); Alemania. Jalan Cifor Rawajaha. Center for International Forestry Research (CIFOR); Indonesia. Ruhr-University Bochum, Institute of Geography, Soil Science/Soil Ecology; Alemania. Plant Production Natural Resources Institute Finland (Luke); Finlandia Fil: Laffan, Shawn W. University of New South Wales. School of Biological, Earth and Environmental Sciences; Australia Fil: Bird, Michael I. James Cook University. College of Science, Technology and Engineering and Centre for Tropical Environmental and Sustainability Science; Australia Fil: Dieleman, Wouter. James Cook University. College of Science, Technology and Engineering and Centre for Tropical Environmental and Sustainability Science; Australia Fil: Pepper, David A. University of New South Wales. School of Biological, Earth and Environmental Sciences; Australia. University of Canberra. Institute for Applied Ecology; Australia Fil: Zutta, Brian. Perú. Ministerio del Ambiente. Programa Nacional de Conservación de Bosques; Perú Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis; Argentina Fil: Silva, Lucas C. R. University of Oregon. Institute of Ecology & Evolution. Department of Geography. Environmental Studies Program; Estados Unidos Fil: Bonser, Stephen P. University of New South Wales. School of Biological, Earth and Environmental Sciences. Evolution and Ecology Research Centre; Australia Fil: Berhongaray, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral.Facultad de Ciencias Agrarias; Argentina Fil: Piñeiro, Gervasio. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Ecología. Laboratorio de Análisis Regional y Teledetección; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de la República. Facultad de Agronomia; Uruguay Fil: Martinez, Maria Jose. Universidad Científica del Sur. Escuela de Agroforestería; Perú Fil: Cowie, Annette L. NSW Department of Primary Industries; Australia. University of New England. School of Environmental and Rural Science; Australia Fil: Ladd, Brenton. Universidad Científica del Sur. Escuela de Agroforestería; Peru. UNSW Australia. School of Biological. Earth and Environmental Sciences, Evolution and Ecology Research Centre; Australia |
description |
Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha−1) and tundra (310 ± 15.3 t ha−1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha−1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 - 221 t ha−1), tropical and subtropical forests (94 - 143 t ha−1) and grasslands (99-104 t ha−1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07-31T12:18:13Z 2018-07-31T12:18:13Z 2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://link.springer.com/article/10.1007/s11027-018-9815-y http://hdl.handle.net/20.500.12123/2925 1381-2386 1573-1596 https://doi.org/10.1007/s11027-018-9815-y |
url |
https://link.springer.com/article/10.1007/s11027-018-9815-y http://hdl.handle.net/20.500.12123/2925 https://doi.org/10.1007/s11027-018-9815-y |
identifier_str_mv |
1381-2386 1573-1596 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Mitigation and Adaptation Strategies for Global Change : 1–18 (May 2018) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619124386299904 |
score |
12.559606 |