Uso de la geoestadística y los sistemas de información geográfica en agricultura
- Autores
- Fernandez, Dario Eduardo; Ribes I Dasi, Manel
- Año de publicación
- 2014
- Idioma
- español castellano
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- La geoestadística es una metodología utilizada para la evaluación de recursos, a la que se ha recurrido por más de cuarenta años en las compañías mineras. Su aplicación a las ciencias biológicas es más reciente y se basa fundamentalmente en que en general, los datos colectados en puntos cercanos tienden a ser más similares que los colectados a mayor distancia. Este hecho lleva a considerar un modelo de variación espacial que contiene al menos tres componentes: una estructura general, que puede ser definida como una tendencia; una segunda estructura superimpuesta, relacionada con la correlación espacial y con una variación gradual y, finalmente; un tercer componente que consiste en una variación al azar causada por errores de muestreo o variaciones espaciales a escalas menores que la red de muestras. El desarrollo de la geoestadística comienza a partir de la labor de D. G. Krige en 1951, quien trabajando con datos de concentraciones de oro, demostró que las varianzas observadas solo podían tener sentido si se consideraba la distancia entre muestras. Matheron (1963), basándose en estas observaciones, desarrolló la teoría de las variables regionalizadas, que contiene los principios fundacionales de la geoestadística. Aplicada esta teoría a las ciencias agronómicas, la geoestadística considera cada valor muestral (variable aleatoria z) asociado a una posición (coordenadas x,y) y se vale de esta misma dependencia para hacer inferencias sobre la distribución de los datos, lo que ha permitido resolver el problema de dependencia espacial que compromete el cálculo de ciertos índices de distribución que no consideran la ubicación espacial de las muestras y generalmente dependen fuertemente de su tamaño. En forma sintética se puede afirmar que, haciendo uso de la dependencia espacial que tienen los datos de una muestra, la geoestadística emplea un algoritmo para cuantificar una variable dada, en lugares no muestreados. Luego, la descripción de la distribución espacial de esa variable se realiza mediante el uso de mapas con datos interpolados, unidos por isolíneas. El método de interpolación más comúnmente utilizado es el de la distancia inversa ponderada (DIP o IDW por su sigla en inglés), debido a la sencillez de los cálculos. Sin embargo, la técnica de kriging ordinario (KO) ha probado su utilidad y ventaja sobre la mayoría de los métodos de interpolación, las cuales derivan de la capacidad de este método para proveer el mejor estimador no sesgado. Este método de interpolación se denomina kriging, en honor a D.G. Krige.
EEA Alto Valle
Fil: Fernandez, Darío Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentina
Fil: Ribes i Dasi, Manel. Universitat de Lleida. Departament de Producció Vegetal i Ciència Forestal; Catalunya, España - Fuente
- Manual de agricultura de precisión / Evandro Chartuni Mantovani; Carlos Magdalena (coord.) / IICA, PROCISUR - Montevideo: IICA, 2014. p. 84-91
- Materia
-
Geoestadística
Sistemas de Información Geográfica
Agricultura
Agricultura de Precisión
Geostatistics
Geographical Information Systems
Agriculture
Precision Agriculture - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/17638
Ver los metadatos del registro completo
id |
INTADig_95da79b43b0d8f76fda5d88c3bdb2e16 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/17638 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Uso de la geoestadística y los sistemas de información geográfica en agriculturaFernandez, Dario EduardoRibes I Dasi, ManelGeoestadísticaSistemas de Información GeográficaAgriculturaAgricultura de PrecisiónGeostatisticsGeographical Information SystemsAgriculturePrecision AgricultureLa geoestadística es una metodología utilizada para la evaluación de recursos, a la que se ha recurrido por más de cuarenta años en las compañías mineras. Su aplicación a las ciencias biológicas es más reciente y se basa fundamentalmente en que en general, los datos colectados en puntos cercanos tienden a ser más similares que los colectados a mayor distancia. Este hecho lleva a considerar un modelo de variación espacial que contiene al menos tres componentes: una estructura general, que puede ser definida como una tendencia; una segunda estructura superimpuesta, relacionada con la correlación espacial y con una variación gradual y, finalmente; un tercer componente que consiste en una variación al azar causada por errores de muestreo o variaciones espaciales a escalas menores que la red de muestras. El desarrollo de la geoestadística comienza a partir de la labor de D. G. Krige en 1951, quien trabajando con datos de concentraciones de oro, demostró que las varianzas observadas solo podían tener sentido si se consideraba la distancia entre muestras. Matheron (1963), basándose en estas observaciones, desarrolló la teoría de las variables regionalizadas, que contiene los principios fundacionales de la geoestadística. Aplicada esta teoría a las ciencias agronómicas, la geoestadística considera cada valor muestral (variable aleatoria z) asociado a una posición (coordenadas x,y) y se vale de esta misma dependencia para hacer inferencias sobre la distribución de los datos, lo que ha permitido resolver el problema de dependencia espacial que compromete el cálculo de ciertos índices de distribución que no consideran la ubicación espacial de las muestras y generalmente dependen fuertemente de su tamaño. En forma sintética se puede afirmar que, haciendo uso de la dependencia espacial que tienen los datos de una muestra, la geoestadística emplea un algoritmo para cuantificar una variable dada, en lugares no muestreados. Luego, la descripción de la distribución espacial de esa variable se realiza mediante el uso de mapas con datos interpolados, unidos por isolíneas. El método de interpolación más comúnmente utilizado es el de la distancia inversa ponderada (DIP o IDW por su sigla en inglés), debido a la sencillez de los cálculos. Sin embargo, la técnica de kriging ordinario (KO) ha probado su utilidad y ventaja sobre la mayoría de los métodos de interpolación, las cuales derivan de la capacidad de este método para proveer el mejor estimador no sesgado. Este método de interpolación se denomina kriging, en honor a D.G. Krige.EEA Alto ValleFil: Fernandez, Darío Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; ArgentinaFil: Ribes i Dasi, Manel. Universitat de Lleida. Departament de Producció Vegetal i Ciència Forestal; Catalunya, EspañaInstituto Interamericano de Cooperación para la Agricultura (IICA)2024-05-06T13:04:48Z2024-05-06T13:04:48Z2014info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttp://hdl.handle.net/20.500.12123/17638https://www.procisur.org.uy/bibliotecas/documentos/manual-de-agricultura-de-precision/es978-92-9248-545-0Manual de agricultura de precisión / Evandro Chartuni Mantovani; Carlos Magdalena (coord.) / IICA, PROCISUR - Montevideo: IICA, 2014. p. 84-91reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaspainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-11T10:24:52Zoai:localhost:20.500.12123/17638instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-11 10:24:52.731INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Uso de la geoestadística y los sistemas de información geográfica en agricultura |
title |
Uso de la geoestadística y los sistemas de información geográfica en agricultura |
spellingShingle |
Uso de la geoestadística y los sistemas de información geográfica en agricultura Fernandez, Dario Eduardo Geoestadística Sistemas de Información Geográfica Agricultura Agricultura de Precisión Geostatistics Geographical Information Systems Agriculture Precision Agriculture |
title_short |
Uso de la geoestadística y los sistemas de información geográfica en agricultura |
title_full |
Uso de la geoestadística y los sistemas de información geográfica en agricultura |
title_fullStr |
Uso de la geoestadística y los sistemas de información geográfica en agricultura |
title_full_unstemmed |
Uso de la geoestadística y los sistemas de información geográfica en agricultura |
title_sort |
Uso de la geoestadística y los sistemas de información geográfica en agricultura |
dc.creator.none.fl_str_mv |
Fernandez, Dario Eduardo Ribes I Dasi, Manel |
author |
Fernandez, Dario Eduardo |
author_facet |
Fernandez, Dario Eduardo Ribes I Dasi, Manel |
author_role |
author |
author2 |
Ribes I Dasi, Manel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Geoestadística Sistemas de Información Geográfica Agricultura Agricultura de Precisión Geostatistics Geographical Information Systems Agriculture Precision Agriculture |
topic |
Geoestadística Sistemas de Información Geográfica Agricultura Agricultura de Precisión Geostatistics Geographical Information Systems Agriculture Precision Agriculture |
dc.description.none.fl_txt_mv |
La geoestadística es una metodología utilizada para la evaluación de recursos, a la que se ha recurrido por más de cuarenta años en las compañías mineras. Su aplicación a las ciencias biológicas es más reciente y se basa fundamentalmente en que en general, los datos colectados en puntos cercanos tienden a ser más similares que los colectados a mayor distancia. Este hecho lleva a considerar un modelo de variación espacial que contiene al menos tres componentes: una estructura general, que puede ser definida como una tendencia; una segunda estructura superimpuesta, relacionada con la correlación espacial y con una variación gradual y, finalmente; un tercer componente que consiste en una variación al azar causada por errores de muestreo o variaciones espaciales a escalas menores que la red de muestras. El desarrollo de la geoestadística comienza a partir de la labor de D. G. Krige en 1951, quien trabajando con datos de concentraciones de oro, demostró que las varianzas observadas solo podían tener sentido si se consideraba la distancia entre muestras. Matheron (1963), basándose en estas observaciones, desarrolló la teoría de las variables regionalizadas, que contiene los principios fundacionales de la geoestadística. Aplicada esta teoría a las ciencias agronómicas, la geoestadística considera cada valor muestral (variable aleatoria z) asociado a una posición (coordenadas x,y) y se vale de esta misma dependencia para hacer inferencias sobre la distribución de los datos, lo que ha permitido resolver el problema de dependencia espacial que compromete el cálculo de ciertos índices de distribución que no consideran la ubicación espacial de las muestras y generalmente dependen fuertemente de su tamaño. En forma sintética se puede afirmar que, haciendo uso de la dependencia espacial que tienen los datos de una muestra, la geoestadística emplea un algoritmo para cuantificar una variable dada, en lugares no muestreados. Luego, la descripción de la distribución espacial de esa variable se realiza mediante el uso de mapas con datos interpolados, unidos por isolíneas. El método de interpolación más comúnmente utilizado es el de la distancia inversa ponderada (DIP o IDW por su sigla en inglés), debido a la sencillez de los cálculos. Sin embargo, la técnica de kriging ordinario (KO) ha probado su utilidad y ventaja sobre la mayoría de los métodos de interpolación, las cuales derivan de la capacidad de este método para proveer el mejor estimador no sesgado. Este método de interpolación se denomina kriging, en honor a D.G. Krige. EEA Alto Valle Fil: Fernandez, Darío Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentina Fil: Ribes i Dasi, Manel. Universitat de Lleida. Departament de Producció Vegetal i Ciència Forestal; Catalunya, España |
description |
La geoestadística es una metodología utilizada para la evaluación de recursos, a la que se ha recurrido por más de cuarenta años en las compañías mineras. Su aplicación a las ciencias biológicas es más reciente y se basa fundamentalmente en que en general, los datos colectados en puntos cercanos tienden a ser más similares que los colectados a mayor distancia. Este hecho lleva a considerar un modelo de variación espacial que contiene al menos tres componentes: una estructura general, que puede ser definida como una tendencia; una segunda estructura superimpuesta, relacionada con la correlación espacial y con una variación gradual y, finalmente; un tercer componente que consiste en una variación al azar causada por errores de muestreo o variaciones espaciales a escalas menores que la red de muestras. El desarrollo de la geoestadística comienza a partir de la labor de D. G. Krige en 1951, quien trabajando con datos de concentraciones de oro, demostró que las varianzas observadas solo podían tener sentido si se consideraba la distancia entre muestras. Matheron (1963), basándose en estas observaciones, desarrolló la teoría de las variables regionalizadas, que contiene los principios fundacionales de la geoestadística. Aplicada esta teoría a las ciencias agronómicas, la geoestadística considera cada valor muestral (variable aleatoria z) asociado a una posición (coordenadas x,y) y se vale de esta misma dependencia para hacer inferencias sobre la distribución de los datos, lo que ha permitido resolver el problema de dependencia espacial que compromete el cálculo de ciertos índices de distribución que no consideran la ubicación espacial de las muestras y generalmente dependen fuertemente de su tamaño. En forma sintética se puede afirmar que, haciendo uso de la dependencia espacial que tienen los datos de una muestra, la geoestadística emplea un algoritmo para cuantificar una variable dada, en lugares no muestreados. Luego, la descripción de la distribución espacial de esa variable se realiza mediante el uso de mapas con datos interpolados, unidos por isolíneas. El método de interpolación más comúnmente utilizado es el de la distancia inversa ponderada (DIP o IDW por su sigla en inglés), debido a la sencillez de los cálculos. Sin embargo, la técnica de kriging ordinario (KO) ha probado su utilidad y ventaja sobre la mayoría de los métodos de interpolación, las cuales derivan de la capacidad de este método para proveer el mejor estimador no sesgado. Este método de interpolación se denomina kriging, en honor a D.G. Krige. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2024-05-06T13:04:48Z 2024-05-06T13:04:48Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/17638 https://www.procisur.org.uy/bibliotecas/documentos/manual-de-agricultura-de-precision/es 978-92-9248-545-0 |
url |
http://hdl.handle.net/20.500.12123/17638 https://www.procisur.org.uy/bibliotecas/documentos/manual-de-agricultura-de-precision/es |
identifier_str_mv |
978-92-9248-545-0 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Interamericano de Cooperación para la Agricultura (IICA) |
publisher.none.fl_str_mv |
Instituto Interamericano de Cooperación para la Agricultura (IICA) |
dc.source.none.fl_str_mv |
Manual de agricultura de precisión / Evandro Chartuni Mantovani; Carlos Magdalena (coord.) / IICA, PROCISUR - Montevideo: IICA, 2014. p. 84-91 reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842975522299052032 |
score |
12.993085 |