Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
- Autores
- Ortiz Chura, Abimael; Gere, José Ignacio; Marcoppido, Gisela Ariana; Depetris, Gustavo; Cravero, Silvio Lorenzo Pedro; Faverin, Claudia; Pinares-Patiño, Cesar; Cataldi, Angel Adrian; Ceron Cucchi, Maria Esperanza
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis.
Instituto de Patobiología
Fil: Ortiz Chura, Abimael. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina
Fil: Ortiz Chura, Abimael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Gere, José. Universidad Tecnológica Nacional. División Investigación y Desarrollo de Ingenierías; Argentina
Fil: Gere, José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marcoppido, Gisela Ariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina
Fil: Marcoppido, Gisela Ariana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Depetris, Gustavo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Cravero, Silvio Lorenzo Pedro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Cravero, Silvio Lorenzo Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Faverin, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Pinares-Patiño, Cesar. Lincoln University. The Agribusiness Group; Nueva Zelanda
Fil: Cataldi, Angel Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Cataldi, Angel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ceron Cucchi, Maria Esperanza. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina
Fil: Ceron Cucchi, Maria Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Fuente
- Animal Nutrition 7 (4) : 1205-1218 (December 2021)
- Materia
-
Emisiones de Metano
Ternero
Digestión Ruminal
Alimentación de los Animales
Nitratos
Flora Microbiana
Methane Emission
Calves
Rumen Digestion
Animal Feeding
Nitrates
Microbial Flora
Raza Holstein
Microbiota - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/10778
Ver los metadatos del registro completo
id |
INTADig_86a1d4a638b41094d63586f3dbaa8f14 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/10778 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calvesOrtiz Chura, AbimaelGere, José IgnacioMarcoppido, Gisela ArianaDepetris, GustavoCravero, Silvio Lorenzo PedroFaverin, ClaudiaPinares-Patiño, CesarCataldi, Angel AdrianCeron Cucchi, Maria EsperanzaEmisiones de MetanoTerneroDigestión RuminalAlimentación de los AnimalesNitratosFlora MicrobianaMethane EmissionCalvesRumen DigestionAnimal FeedingNitratesMicrobial FloraRaza HolsteinMicrobiotaIt is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis.Instituto de PatobiologíaFil: Ortiz Chura, Abimael. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Ortiz Chura, Abimael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Gere, José. Universidad Tecnológica Nacional. División Investigación y Desarrollo de Ingenierías; ArgentinaFil: Gere, José. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marcoppido, Gisela Ariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Marcoppido, Gisela Ariana. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Depetris, Gustavo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Cravero, Silvio Lorenzo Pedro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Cravero, Silvio Lorenzo Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Faverin, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Pinares-Patiño, Cesar. Lincoln University. The Agribusiness Group; Nueva ZelandaFil: Cataldi, Angel Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Cataldi, Angel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ceron Cucchi, Maria Esperanza. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Ceron Cucchi, Maria Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2021-11-15T14:51:24Z2021-11-15T14:51:24Z2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/10778https://www.sciencedirect.com/science/article/pii/S24056545210016572405-6545https://doi.org/10.1016/j.aninu.2021.07.005Animal Nutrition 7 (4) : 1205-1218 (December 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2019-PD-E3-I058-001/2019-PD-E3-I058-001/AR./EMISIONES (GEI) EN LOS SISTEMAS AGROPECUARIOS y FORESTALES. MEDIDAS DE MITIGACIÓNinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:24Zoai:localhost:20.500.12123/10778instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:25.008INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves |
title |
Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves |
spellingShingle |
Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves Ortiz Chura, Abimael Emisiones de Metano Ternero Digestión Ruminal Alimentación de los Animales Nitratos Flora Microbiana Methane Emission Calves Rumen Digestion Animal Feeding Nitrates Microbial Flora Raza Holstein Microbiota |
title_short |
Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves |
title_full |
Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves |
title_fullStr |
Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves |
title_full_unstemmed |
Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves |
title_sort |
Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves |
dc.creator.none.fl_str_mv |
Ortiz Chura, Abimael Gere, José Ignacio Marcoppido, Gisela Ariana Depetris, Gustavo Cravero, Silvio Lorenzo Pedro Faverin, Claudia Pinares-Patiño, Cesar Cataldi, Angel Adrian Ceron Cucchi, Maria Esperanza |
author |
Ortiz Chura, Abimael |
author_facet |
Ortiz Chura, Abimael Gere, José Ignacio Marcoppido, Gisela Ariana Depetris, Gustavo Cravero, Silvio Lorenzo Pedro Faverin, Claudia Pinares-Patiño, Cesar Cataldi, Angel Adrian Ceron Cucchi, Maria Esperanza |
author_role |
author |
author2 |
Gere, José Ignacio Marcoppido, Gisela Ariana Depetris, Gustavo Cravero, Silvio Lorenzo Pedro Faverin, Claudia Pinares-Patiño, Cesar Cataldi, Angel Adrian Ceron Cucchi, Maria Esperanza |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Emisiones de Metano Ternero Digestión Ruminal Alimentación de los Animales Nitratos Flora Microbiana Methane Emission Calves Rumen Digestion Animal Feeding Nitrates Microbial Flora Raza Holstein Microbiota |
topic |
Emisiones de Metano Ternero Digestión Ruminal Alimentación de los Animales Nitratos Flora Microbiana Methane Emission Calves Rumen Digestion Animal Feeding Nitrates Microbial Flora Raza Holstein Microbiota |
dc.description.none.fl_txt_mv |
It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis. Instituto de Patobiología Fil: Ortiz Chura, Abimael. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina Fil: Ortiz Chura, Abimael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Gere, José. Universidad Tecnológica Nacional. División Investigación y Desarrollo de Ingenierías; Argentina Fil: Gere, José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Marcoppido, Gisela Ariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina Fil: Marcoppido, Gisela Ariana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Depetris, Gustavo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Cravero, Silvio Lorenzo Pedro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Cravero, Silvio Lorenzo Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Faverin, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Pinares-Patiño, Cesar. Lincoln University. The Agribusiness Group; Nueva Zelanda Fil: Cataldi, Angel Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Cataldi, Angel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ceron Cucchi, Maria Esperanza. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina Fil: Ceron Cucchi, Maria Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-15T14:51:24Z 2021-11-15T14:51:24Z 2021-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/10778 https://www.sciencedirect.com/science/article/pii/S2405654521001657 2405-6545 https://doi.org/10.1016/j.aninu.2021.07.005 |
url |
http://hdl.handle.net/20.500.12123/10778 https://www.sciencedirect.com/science/article/pii/S2405654521001657 https://doi.org/10.1016/j.aninu.2021.07.005 |
identifier_str_mv |
2405-6545 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/2019-PD-E3-I058-001/2019-PD-E3-I058-001/AR./EMISIONES (GEI) EN LOS SISTEMAS AGROPECUARIOS y FORESTALES. MEDIDAS DE MITIGACIÓN |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Animal Nutrition 7 (4) : 1205-1218 (December 2021) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619160009572352 |
score |
12.559606 |