Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves

Autores
Ortiz Chura, Abimael; Gere, José Ignacio; Marcoppido, Gisela Ariana; Depetris, Gustavo; Cravero, Silvio Lorenzo Pedro; Faverin, Claudia; Pinares-Patiño, Cesar; Cataldi, Angel Adrian; Ceron Cucchi, Maria Esperanza
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis.
Instituto de Patobiología
Fil: Ortiz Chura, Abimael. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina
Fil: Ortiz Chura, Abimael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Gere, José. Universidad Tecnológica Nacional. División Investigación y Desarrollo de Ingenierías; Argentina
Fil: Gere, José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marcoppido, Gisela Ariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina
Fil: Marcoppido, Gisela Ariana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Depetris, Gustavo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Cravero, Silvio Lorenzo Pedro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Cravero, Silvio Lorenzo Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Faverin, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Pinares-Patiño, Cesar. Lincoln University. The Agribusiness Group; Nueva Zelanda
Fil: Cataldi, Angel Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Cataldi, Angel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ceron Cucchi, Maria Esperanza. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina
Fil: Ceron Cucchi, Maria Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fuente
Animal Nutrition 7 (4) : 1205-1218 (December 2021)
Materia
Emisiones de Metano
Ternero
Digestión Ruminal
Alimentación de los Animales
Nitratos
Flora Microbiana
Methane Emission
Calves
Rumen Digestion
Animal Feeding
Nitrates
Microbial Flora
Raza Holstein
Microbiota
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/10778

id INTADig_86a1d4a638b41094d63586f3dbaa8f14
oai_identifier_str oai:localhost:20.500.12123/10778
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calvesOrtiz Chura, AbimaelGere, José IgnacioMarcoppido, Gisela ArianaDepetris, GustavoCravero, Silvio Lorenzo PedroFaverin, ClaudiaPinares-Patiño, CesarCataldi, Angel AdrianCeron Cucchi, Maria EsperanzaEmisiones de MetanoTerneroDigestión RuminalAlimentación de los AnimalesNitratosFlora MicrobianaMethane EmissionCalvesRumen DigestionAnimal FeedingNitratesMicrobial FloraRaza HolsteinMicrobiotaIt is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis.Instituto de PatobiologíaFil: Ortiz Chura, Abimael. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Ortiz Chura, Abimael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Gere, José. Universidad Tecnológica Nacional. División Investigación y Desarrollo de Ingenierías; ArgentinaFil: Gere, José. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marcoppido, Gisela Ariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Marcoppido, Gisela Ariana. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Depetris, Gustavo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Cravero, Silvio Lorenzo Pedro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Cravero, Silvio Lorenzo Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Faverin, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Pinares-Patiño, Cesar. Lincoln University. The Agribusiness Group; Nueva ZelandaFil: Cataldi, Angel Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Cataldi, Angel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ceron Cucchi, Maria Esperanza. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Ceron Cucchi, Maria Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2021-11-15T14:51:24Z2021-11-15T14:51:24Z2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/10778https://www.sciencedirect.com/science/article/pii/S24056545210016572405-6545https://doi.org/10.1016/j.aninu.2021.07.005Animal Nutrition 7 (4) : 1205-1218 (December 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2019-PD-E3-I058-001/2019-PD-E3-I058-001/AR./EMISIONES (GEI) EN LOS SISTEMAS AGROPECUARIOS y FORESTALES. MEDIDAS DE MITIGACIÓNinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:24Zoai:localhost:20.500.12123/10778instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:25.008INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
title Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
spellingShingle Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
Ortiz Chura, Abimael
Emisiones de Metano
Ternero
Digestión Ruminal
Alimentación de los Animales
Nitratos
Flora Microbiana
Methane Emission
Calves
Rumen Digestion
Animal Feeding
Nitrates
Microbial Flora
Raza Holstein
Microbiota
title_short Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
title_full Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
title_fullStr Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
title_full_unstemmed Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
title_sort Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
dc.creator.none.fl_str_mv Ortiz Chura, Abimael
Gere, José Ignacio
Marcoppido, Gisela Ariana
Depetris, Gustavo
Cravero, Silvio Lorenzo Pedro
Faverin, Claudia
Pinares-Patiño, Cesar
Cataldi, Angel Adrian
Ceron Cucchi, Maria Esperanza
author Ortiz Chura, Abimael
author_facet Ortiz Chura, Abimael
Gere, José Ignacio
Marcoppido, Gisela Ariana
Depetris, Gustavo
Cravero, Silvio Lorenzo Pedro
Faverin, Claudia
Pinares-Patiño, Cesar
Cataldi, Angel Adrian
Ceron Cucchi, Maria Esperanza
author_role author
author2 Gere, José Ignacio
Marcoppido, Gisela Ariana
Depetris, Gustavo
Cravero, Silvio Lorenzo Pedro
Faverin, Claudia
Pinares-Patiño, Cesar
Cataldi, Angel Adrian
Ceron Cucchi, Maria Esperanza
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Emisiones de Metano
Ternero
Digestión Ruminal
Alimentación de los Animales
Nitratos
Flora Microbiana
Methane Emission
Calves
Rumen Digestion
Animal Feeding
Nitrates
Microbial Flora
Raza Holstein
Microbiota
topic Emisiones de Metano
Ternero
Digestión Ruminal
Alimentación de los Animales
Nitratos
Flora Microbiana
Methane Emission
Calves
Rumen Digestion
Animal Feeding
Nitrates
Microbial Flora
Raza Holstein
Microbiota
dc.description.none.fl_txt_mv It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis.
Instituto de Patobiología
Fil: Ortiz Chura, Abimael. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina
Fil: Ortiz Chura, Abimael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Gere, José. Universidad Tecnológica Nacional. División Investigación y Desarrollo de Ingenierías; Argentina
Fil: Gere, José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marcoppido, Gisela Ariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina
Fil: Marcoppido, Gisela Ariana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Depetris, Gustavo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Cravero, Silvio Lorenzo Pedro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Cravero, Silvio Lorenzo Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Faverin, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Pinares-Patiño, Cesar. Lincoln University. The Agribusiness Group; Nueva Zelanda
Fil: Cataldi, Angel Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Cataldi, Angel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ceron Cucchi, Maria Esperanza. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina
Fil: Ceron Cucchi, Maria Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-15T14:51:24Z
2021-11-15T14:51:24Z
2021-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/10778
https://www.sciencedirect.com/science/article/pii/S2405654521001657
2405-6545
https://doi.org/10.1016/j.aninu.2021.07.005
url http://hdl.handle.net/20.500.12123/10778
https://www.sciencedirect.com/science/article/pii/S2405654521001657
https://doi.org/10.1016/j.aninu.2021.07.005
identifier_str_mv 2405-6545
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repograntAgreement/INTA/2019-PD-E3-I058-001/2019-PD-E3-I058-001/AR./EMISIONES (GEI) EN LOS SISTEMAS AGROPECUARIOS y FORESTALES. MEDIDAS DE MITIGACIÓN
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Animal Nutrition 7 (4) : 1205-1218 (December 2021)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619160009572352
score 12.559606