A new gnotobiotic pig model of P[6] human rotavirus infection and disease for preclinical evaluation of rotavirus vaccines
- Autores
- Nyblade, Charlotte; Hensley, Casey; Parreño, Gladys Viviana; Zhou, Peng; Frazier, Maggie; Frazier, Annie; Ramesh, Ashwin; Lei, Shaohua; Degiuseppe, Juan Ignacio; Tan, Ming; Yuan, Lijuan
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Human rotavirus (HRV) is a leading cause of gastroenteritis in children under 5 years of age. Licensed vaccines containing G1P[8] and G1-4P[8] strains are less efficacious against newly emerging P[6] strains, indicating an urgent need for better cross protective vaccines. Here, we report our development of a new gnotobiotic (Gn) pig model of P[6] HRV infection and disease as a tool for evaluating potential vaccine candidates. The Arg HRV (G4P[6]) strain was derived from a diarrheic human infant stool sample and determined to be free of other viruses by metagenomic sequencing. Neonatal Gn pigs were orally inoculated with the stool suspension containing 5.6 × 105 fluorescent focus units (FFU) of the virus. Small and large intestinal contents were collected at post inoculation day 2 or 3. The virus was passaged 6 times in neonatal Gn pigs to generate a large inoculum pool. Next, 33–34 day old Gn pigs were orally inoculated with 10−2, 103, 104, and 105 FFU of Arg HRV to determine the optimal challenge dose. All pigs developed clinical signs of infection, regardless of the inoculum dose. The optimal challenge dose was determined to be 105 FFU. This new Gn pig model is ready to be used to assess the protective efficacy of candidate monovalent and multivalent vaccines against P[6] HRV.
Instituto de Virología
Fil: Nyblade, Charlotte. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos
Fil: Hensley, Casey. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos
Fil: Parreño, Gladys Viviana. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos
Fil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). INCUINTA. Instituto de Virologia e Innovaciones Tecnologicas (IVIT); Argentina
Fil: Zhou, Peng. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos
Fil: Frazier, Maggie. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos
Fil: Frazier, Annie. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos
Fil: Ramesh, Ashwin. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos
Fil: Lei, Shaohua. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos
Fil: Degiuseppe, Juan Ignacio. Administración Nacional de Laboratorios e Institutos de Salud (ANLIS). Instituto Nacional de Enfermedades Infecciosas “Dr. Carlos G. Malbrán” (INEI). Laboratorio de Gastroenteritis Virales; Argentina
Fil: Tan, Ming. Cincinnati Children’s Hospital Medical Center. Division of Infectious Diseases; Estados Unidos
Fil: Tan, Ming. University of Cincinnati College of Medicine. Department of Pediatrics; Estados Unidos
Fil: Yuan, Lijuan. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos - Fuente
- Viruses 14 (12) : 2803 (2022)
- Materia
-
Rotavirus
Gnotobiotic Animals
Diarrhoea
Swine
Vaccines
Animales Notobióticos
Diarrea
Cerdo
Vacuna
Human Rotavirus Infection
Infección por Rotavirus Humano - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/16366
Ver los metadatos del registro completo
id |
INTADig_85aef9ffba42676fb4e8b89ac17de7ff |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/16366 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
A new gnotobiotic pig model of P[6] human rotavirus infection and disease for preclinical evaluation of rotavirus vaccinesNyblade, CharlotteHensley, CaseyParreño, Gladys VivianaZhou, PengFrazier, MaggieFrazier, AnnieRamesh, AshwinLei, ShaohuaDegiuseppe, Juan IgnacioTan, MingYuan, LijuanRotavirusGnotobiotic AnimalsDiarrhoeaSwineVaccinesAnimales NotobióticosDiarreaCerdoVacunaHuman Rotavirus InfectionInfección por Rotavirus HumanoHuman rotavirus (HRV) is a leading cause of gastroenteritis in children under 5 years of age. Licensed vaccines containing G1P[8] and G1-4P[8] strains are less efficacious against newly emerging P[6] strains, indicating an urgent need for better cross protective vaccines. Here, we report our development of a new gnotobiotic (Gn) pig model of P[6] HRV infection and disease as a tool for evaluating potential vaccine candidates. The Arg HRV (G4P[6]) strain was derived from a diarrheic human infant stool sample and determined to be free of other viruses by metagenomic sequencing. Neonatal Gn pigs were orally inoculated with the stool suspension containing 5.6 × 105 fluorescent focus units (FFU) of the virus. Small and large intestinal contents were collected at post inoculation day 2 or 3. The virus was passaged 6 times in neonatal Gn pigs to generate a large inoculum pool. Next, 33–34 day old Gn pigs were orally inoculated with 10−2, 103, 104, and 105 FFU of Arg HRV to determine the optimal challenge dose. All pigs developed clinical signs of infection, regardless of the inoculum dose. The optimal challenge dose was determined to be 105 FFU. This new Gn pig model is ready to be used to assess the protective efficacy of candidate monovalent and multivalent vaccines against P[6] HRV.Instituto de VirologíaFil: Nyblade, Charlotte. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Hensley, Casey. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Parreño, Gladys Viviana. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). INCUINTA. Instituto de Virologia e Innovaciones Tecnologicas (IVIT); ArgentinaFil: Zhou, Peng. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Frazier, Maggie. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Frazier, Annie. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Ramesh, Ashwin. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Lei, Shaohua. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Degiuseppe, Juan Ignacio. Administración Nacional de Laboratorios e Institutos de Salud (ANLIS). Instituto Nacional de Enfermedades Infecciosas “Dr. Carlos G. Malbrán” (INEI). Laboratorio de Gastroenteritis Virales; ArgentinaFil: Tan, Ming. Cincinnati Children’s Hospital Medical Center. Division of Infectious Diseases; Estados UnidosFil: Tan, Ming. University of Cincinnati College of Medicine. Department of Pediatrics; Estados UnidosFil: Yuan, Lijuan. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosMDPI2023-12-27T14:22:43Z2023-12-27T14:22:43Z2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/16366https://www.mdpi.com/1999-4915/14/12/28031999-4915https://doi.org/10.3390/v14122803Viruses 14 (12) : 2803 (2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:50:08Zoai:localhost:20.500.12123/16366instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:50:09.533INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
A new gnotobiotic pig model of P[6] human rotavirus infection and disease for preclinical evaluation of rotavirus vaccines |
title |
A new gnotobiotic pig model of P[6] human rotavirus infection and disease for preclinical evaluation of rotavirus vaccines |
spellingShingle |
A new gnotobiotic pig model of P[6] human rotavirus infection and disease for preclinical evaluation of rotavirus vaccines Nyblade, Charlotte Rotavirus Gnotobiotic Animals Diarrhoea Swine Vaccines Animales Notobióticos Diarrea Cerdo Vacuna Human Rotavirus Infection Infección por Rotavirus Humano |
title_short |
A new gnotobiotic pig model of P[6] human rotavirus infection and disease for preclinical evaluation of rotavirus vaccines |
title_full |
A new gnotobiotic pig model of P[6] human rotavirus infection and disease for preclinical evaluation of rotavirus vaccines |
title_fullStr |
A new gnotobiotic pig model of P[6] human rotavirus infection and disease for preclinical evaluation of rotavirus vaccines |
title_full_unstemmed |
A new gnotobiotic pig model of P[6] human rotavirus infection and disease for preclinical evaluation of rotavirus vaccines |
title_sort |
A new gnotobiotic pig model of P[6] human rotavirus infection and disease for preclinical evaluation of rotavirus vaccines |
dc.creator.none.fl_str_mv |
Nyblade, Charlotte Hensley, Casey Parreño, Gladys Viviana Zhou, Peng Frazier, Maggie Frazier, Annie Ramesh, Ashwin Lei, Shaohua Degiuseppe, Juan Ignacio Tan, Ming Yuan, Lijuan |
author |
Nyblade, Charlotte |
author_facet |
Nyblade, Charlotte Hensley, Casey Parreño, Gladys Viviana Zhou, Peng Frazier, Maggie Frazier, Annie Ramesh, Ashwin Lei, Shaohua Degiuseppe, Juan Ignacio Tan, Ming Yuan, Lijuan |
author_role |
author |
author2 |
Hensley, Casey Parreño, Gladys Viviana Zhou, Peng Frazier, Maggie Frazier, Annie Ramesh, Ashwin Lei, Shaohua Degiuseppe, Juan Ignacio Tan, Ming Yuan, Lijuan |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Rotavirus Gnotobiotic Animals Diarrhoea Swine Vaccines Animales Notobióticos Diarrea Cerdo Vacuna Human Rotavirus Infection Infección por Rotavirus Humano |
topic |
Rotavirus Gnotobiotic Animals Diarrhoea Swine Vaccines Animales Notobióticos Diarrea Cerdo Vacuna Human Rotavirus Infection Infección por Rotavirus Humano |
dc.description.none.fl_txt_mv |
Human rotavirus (HRV) is a leading cause of gastroenteritis in children under 5 years of age. Licensed vaccines containing G1P[8] and G1-4P[8] strains are less efficacious against newly emerging P[6] strains, indicating an urgent need for better cross protective vaccines. Here, we report our development of a new gnotobiotic (Gn) pig model of P[6] HRV infection and disease as a tool for evaluating potential vaccine candidates. The Arg HRV (G4P[6]) strain was derived from a diarrheic human infant stool sample and determined to be free of other viruses by metagenomic sequencing. Neonatal Gn pigs were orally inoculated with the stool suspension containing 5.6 × 105 fluorescent focus units (FFU) of the virus. Small and large intestinal contents were collected at post inoculation day 2 or 3. The virus was passaged 6 times in neonatal Gn pigs to generate a large inoculum pool. Next, 33–34 day old Gn pigs were orally inoculated with 10−2, 103, 104, and 105 FFU of Arg HRV to determine the optimal challenge dose. All pigs developed clinical signs of infection, regardless of the inoculum dose. The optimal challenge dose was determined to be 105 FFU. This new Gn pig model is ready to be used to assess the protective efficacy of candidate monovalent and multivalent vaccines against P[6] HRV. Instituto de Virología Fil: Nyblade, Charlotte. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos Fil: Hensley, Casey. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos Fil: Parreño, Gladys Viviana. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos Fil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). INCUINTA. Instituto de Virologia e Innovaciones Tecnologicas (IVIT); Argentina Fil: Zhou, Peng. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos Fil: Frazier, Maggie. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos Fil: Frazier, Annie. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos Fil: Ramesh, Ashwin. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos Fil: Lei, Shaohua. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos Fil: Degiuseppe, Juan Ignacio. Administración Nacional de Laboratorios e Institutos de Salud (ANLIS). Instituto Nacional de Enfermedades Infecciosas “Dr. Carlos G. Malbrán” (INEI). Laboratorio de Gastroenteritis Virales; Argentina Fil: Tan, Ming. Cincinnati Children’s Hospital Medical Center. Division of Infectious Diseases; Estados Unidos Fil: Tan, Ming. University of Cincinnati College of Medicine. Department of Pediatrics; Estados Unidos Fil: Yuan, Lijuan. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados Unidos |
description |
Human rotavirus (HRV) is a leading cause of gastroenteritis in children under 5 years of age. Licensed vaccines containing G1P[8] and G1-4P[8] strains are less efficacious against newly emerging P[6] strains, indicating an urgent need for better cross protective vaccines. Here, we report our development of a new gnotobiotic (Gn) pig model of P[6] HRV infection and disease as a tool for evaluating potential vaccine candidates. The Arg HRV (G4P[6]) strain was derived from a diarrheic human infant stool sample and determined to be free of other viruses by metagenomic sequencing. Neonatal Gn pigs were orally inoculated with the stool suspension containing 5.6 × 105 fluorescent focus units (FFU) of the virus. Small and large intestinal contents were collected at post inoculation day 2 or 3. The virus was passaged 6 times in neonatal Gn pigs to generate a large inoculum pool. Next, 33–34 day old Gn pigs were orally inoculated with 10−2, 103, 104, and 105 FFU of Arg HRV to determine the optimal challenge dose. All pigs developed clinical signs of infection, regardless of the inoculum dose. The optimal challenge dose was determined to be 105 FFU. This new Gn pig model is ready to be used to assess the protective efficacy of candidate monovalent and multivalent vaccines against P[6] HRV. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 2023-12-27T14:22:43Z 2023-12-27T14:22:43Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/16366 https://www.mdpi.com/1999-4915/14/12/2803 1999-4915 https://doi.org/10.3390/v14122803 |
url |
http://hdl.handle.net/20.500.12123/16366 https://www.mdpi.com/1999-4915/14/12/2803 https://doi.org/10.3390/v14122803 |
identifier_str_mv |
1999-4915 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Viruses 14 (12) : 2803 (2022) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341417211396096 |
score |
12.623145 |