Variabilidad espacial de la profundidad del suelo. Métodos de interpolación para el sudoeste bonaerense
- Autores
- Frolla, Franco Daniel; Zilio, Josefina Paula; Kruger, Hugo Ricardo
- Año de publicación
- 2015
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- La presencia de tosca es una de las principales limitantes de la producción agropecuaria del sudoeste bonaerense. La elaboración de mapas de profundidad de suelo resulta un paso previo a su manejo por ambientes. Se realizaron 199 observaciones, con sonda mecánica y en forma de malla semirígida, en un lote de 60 ha cercano a la localidad de San Germán (partido de Puán, provincia de Bs. As.). Los objetivos fueron: comparar la habilidad predictiva de dos métodos usuales de interpolación (Kriging ordinario y Ponderación de Distancia Inversa o IDW) y determinar la densidad mínima de observaciones requerida para delimitar unidades de manejo de suelos y cultivos. Los datos fueron desglosados en 5 densidades de puntos (0.5-0.75-1-1.5-2 observaciones.ha-1). Los mapas obtenidos fueron contrastados con un set de observaciones reservadas específicamente con el fin de comparar la capacidad de predicción de estos. Se utilizaron estadísticos como el Promedio Cuadrado del Error (PCE), el Estimador de predicción (E) y el coeficiente de determinación para regresiones lineales y polinómicas. Se realizaron mapas de error para identificar la variabilidad de la predicción. Los interpoladores no presentaron diferencias marcadas en su exactitud, pero sí lo hizo la densidad de observaciones. Por su simplicidad relativa y una ligera tendencia a lograr mejores valores en los estadísticos utilizados, se sugiere el uso de IDW. Para la delimitación de unidades homogéneas de manejo en función de la profundidad de suelo se adoptó un mínimo de 1 observación ha-1, recomendándose analizar la conveniencia de utilizar una densidad mayor de observaciones (1,5-2 ha-1) en sectores complejos, de pobre estimación, que coincidieron con suelos de escasa profundidad.
Petrocalcic horizons are among the main soil constraints to agricultural production in the south-west of Buenos Aires province. They decrease effective soil depth and water holding capacity. This paper deals with the mapping of soil depth. The objectives were: to compare predictive ability of two interpolation methods (ordinary Kriging and Inverse Distance Weighted, IDW), and establish the minimum observation density requirements to define management units. In a 60-ha production farm located near San Germán town (Puán district, Bs. As. province), 199 soil depth observations were performed using a mechanical probe. Data were grouped into 5 observation densities (0.5-0.75-1-1.5-2 observation ha-1). Resulting maps were checked against a set of data reserved for this purpose. Statistics like Mean Square Error (PCE), goodness of Prediction estimator (E), and coefficient of determination (R2 ), for linear and quadratic regressions were used to estimate their precision. Maps representing the Interpolation Error (EI) were made to identify prediction variability. Interpolation methods showed no great differences in precision, but the increase in observation density improved mapping precision. Based on its relative simplicity and a slight trend to better statistics values, IDW is proposed as a possible standard method, with a minimum density of 1 observation ha-1 for this specific soil management maps. A higher observation densities (1.5 – 2 ha-1), can be used to increase accuracy in more complex areas of this field related to shallow soils.
EEA Bordenave
Fil: Frolla, Franco Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Zilio, Josefina Paula. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Kruger, Hugo Ricardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina - Fuente
- RIA, 41 (3) : 309-316
- Materia
-
Suelo
Soil
Profundidad del Suelo
Sudeste Bonaerense - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/453
Ver los metadatos del registro completo
id |
INTADig_7d13a559fa2bc259ed2b344d2a056ff3 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/453 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Variabilidad espacial de la profundidad del suelo. Métodos de interpolación para el sudoeste bonaerenseFrolla, Franco DanielZilio, Josefina PaulaKruger, Hugo RicardoSueloSoilProfundidad del SueloSudeste BonaerenseLa presencia de tosca es una de las principales limitantes de la producción agropecuaria del sudoeste bonaerense. La elaboración de mapas de profundidad de suelo resulta un paso previo a su manejo por ambientes. Se realizaron 199 observaciones, con sonda mecánica y en forma de malla semirígida, en un lote de 60 ha cercano a la localidad de San Germán (partido de Puán, provincia de Bs. As.). Los objetivos fueron: comparar la habilidad predictiva de dos métodos usuales de interpolación (Kriging ordinario y Ponderación de Distancia Inversa o IDW) y determinar la densidad mínima de observaciones requerida para delimitar unidades de manejo de suelos y cultivos. Los datos fueron desglosados en 5 densidades de puntos (0.5-0.75-1-1.5-2 observaciones.ha-1). Los mapas obtenidos fueron contrastados con un set de observaciones reservadas específicamente con el fin de comparar la capacidad de predicción de estos. Se utilizaron estadísticos como el Promedio Cuadrado del Error (PCE), el Estimador de predicción (E) y el coeficiente de determinación para regresiones lineales y polinómicas. Se realizaron mapas de error para identificar la variabilidad de la predicción. Los interpoladores no presentaron diferencias marcadas en su exactitud, pero sí lo hizo la densidad de observaciones. Por su simplicidad relativa y una ligera tendencia a lograr mejores valores en los estadísticos utilizados, se sugiere el uso de IDW. Para la delimitación de unidades homogéneas de manejo en función de la profundidad de suelo se adoptó un mínimo de 1 observación ha-1, recomendándose analizar la conveniencia de utilizar una densidad mayor de observaciones (1,5-2 ha-1) en sectores complejos, de pobre estimación, que coincidieron con suelos de escasa profundidad.Petrocalcic horizons are among the main soil constraints to agricultural production in the south-west of Buenos Aires province. They decrease effective soil depth and water holding capacity. This paper deals with the mapping of soil depth. The objectives were: to compare predictive ability of two interpolation methods (ordinary Kriging and Inverse Distance Weighted, IDW), and establish the minimum observation density requirements to define management units. In a 60-ha production farm located near San Germán town (Puán district, Bs. As. province), 199 soil depth observations were performed using a mechanical probe. Data were grouped into 5 observation densities (0.5-0.75-1-1.5-2 observation ha-1). Resulting maps were checked against a set of data reserved for this purpose. Statistics like Mean Square Error (PCE), goodness of Prediction estimator (E), and coefficient of determination (R2 ), for linear and quadratic regressions were used to estimate their precision. Maps representing the Interpolation Error (EI) were made to identify prediction variability. Interpolation methods showed no great differences in precision, but the increase in observation density improved mapping precision. Based on its relative simplicity and a slight trend to better statistics values, IDW is proposed as a possible standard method, with a minimum density of 1 observation ha-1 for this specific soil management maps. A higher observation densities (1.5 – 2 ha-1), can be used to increase accuracy in more complex areas of this field related to shallow soils.EEA BordenaveFil: Frolla, Franco Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; ArgentinaFil: Zilio, Josefina Paula. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; ArgentinaFil: Kruger, Hugo Ricardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; ArgentinaGerencia de Comunicación e Imagen Institucional, DNA SICC, INTA2017-06-22T17:50:25Z2017-06-22T17:50:25Z2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/453http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1669-23142015000300011RIA, 41 (3) : 309-316reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaspainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:44:05Zoai:localhost:20.500.12123/453instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:06.212INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Variabilidad espacial de la profundidad del suelo. Métodos de interpolación para el sudoeste bonaerense |
title |
Variabilidad espacial de la profundidad del suelo. Métodos de interpolación para el sudoeste bonaerense |
spellingShingle |
Variabilidad espacial de la profundidad del suelo. Métodos de interpolación para el sudoeste bonaerense Frolla, Franco Daniel Suelo Soil Profundidad del Suelo Sudeste Bonaerense |
title_short |
Variabilidad espacial de la profundidad del suelo. Métodos de interpolación para el sudoeste bonaerense |
title_full |
Variabilidad espacial de la profundidad del suelo. Métodos de interpolación para el sudoeste bonaerense |
title_fullStr |
Variabilidad espacial de la profundidad del suelo. Métodos de interpolación para el sudoeste bonaerense |
title_full_unstemmed |
Variabilidad espacial de la profundidad del suelo. Métodos de interpolación para el sudoeste bonaerense |
title_sort |
Variabilidad espacial de la profundidad del suelo. Métodos de interpolación para el sudoeste bonaerense |
dc.creator.none.fl_str_mv |
Frolla, Franco Daniel Zilio, Josefina Paula Kruger, Hugo Ricardo |
author |
Frolla, Franco Daniel |
author_facet |
Frolla, Franco Daniel Zilio, Josefina Paula Kruger, Hugo Ricardo |
author_role |
author |
author2 |
Zilio, Josefina Paula Kruger, Hugo Ricardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Suelo Soil Profundidad del Suelo Sudeste Bonaerense |
topic |
Suelo Soil Profundidad del Suelo Sudeste Bonaerense |
dc.description.none.fl_txt_mv |
La presencia de tosca es una de las principales limitantes de la producción agropecuaria del sudoeste bonaerense. La elaboración de mapas de profundidad de suelo resulta un paso previo a su manejo por ambientes. Se realizaron 199 observaciones, con sonda mecánica y en forma de malla semirígida, en un lote de 60 ha cercano a la localidad de San Germán (partido de Puán, provincia de Bs. As.). Los objetivos fueron: comparar la habilidad predictiva de dos métodos usuales de interpolación (Kriging ordinario y Ponderación de Distancia Inversa o IDW) y determinar la densidad mínima de observaciones requerida para delimitar unidades de manejo de suelos y cultivos. Los datos fueron desglosados en 5 densidades de puntos (0.5-0.75-1-1.5-2 observaciones.ha-1). Los mapas obtenidos fueron contrastados con un set de observaciones reservadas específicamente con el fin de comparar la capacidad de predicción de estos. Se utilizaron estadísticos como el Promedio Cuadrado del Error (PCE), el Estimador de predicción (E) y el coeficiente de determinación para regresiones lineales y polinómicas. Se realizaron mapas de error para identificar la variabilidad de la predicción. Los interpoladores no presentaron diferencias marcadas en su exactitud, pero sí lo hizo la densidad de observaciones. Por su simplicidad relativa y una ligera tendencia a lograr mejores valores en los estadísticos utilizados, se sugiere el uso de IDW. Para la delimitación de unidades homogéneas de manejo en función de la profundidad de suelo se adoptó un mínimo de 1 observación ha-1, recomendándose analizar la conveniencia de utilizar una densidad mayor de observaciones (1,5-2 ha-1) en sectores complejos, de pobre estimación, que coincidieron con suelos de escasa profundidad. Petrocalcic horizons are among the main soil constraints to agricultural production in the south-west of Buenos Aires province. They decrease effective soil depth and water holding capacity. This paper deals with the mapping of soil depth. The objectives were: to compare predictive ability of two interpolation methods (ordinary Kriging and Inverse Distance Weighted, IDW), and establish the minimum observation density requirements to define management units. In a 60-ha production farm located near San Germán town (Puán district, Bs. As. province), 199 soil depth observations were performed using a mechanical probe. Data were grouped into 5 observation densities (0.5-0.75-1-1.5-2 observation ha-1). Resulting maps were checked against a set of data reserved for this purpose. Statistics like Mean Square Error (PCE), goodness of Prediction estimator (E), and coefficient of determination (R2 ), for linear and quadratic regressions were used to estimate their precision. Maps representing the Interpolation Error (EI) were made to identify prediction variability. Interpolation methods showed no great differences in precision, but the increase in observation density improved mapping precision. Based on its relative simplicity and a slight trend to better statistics values, IDW is proposed as a possible standard method, with a minimum density of 1 observation ha-1 for this specific soil management maps. A higher observation densities (1.5 – 2 ha-1), can be used to increase accuracy in more complex areas of this field related to shallow soils. EEA Bordenave Fil: Frolla, Franco Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina Fil: Zilio, Josefina Paula. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina Fil: Kruger, Hugo Ricardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina |
description |
La presencia de tosca es una de las principales limitantes de la producción agropecuaria del sudoeste bonaerense. La elaboración de mapas de profundidad de suelo resulta un paso previo a su manejo por ambientes. Se realizaron 199 observaciones, con sonda mecánica y en forma de malla semirígida, en un lote de 60 ha cercano a la localidad de San Germán (partido de Puán, provincia de Bs. As.). Los objetivos fueron: comparar la habilidad predictiva de dos métodos usuales de interpolación (Kriging ordinario y Ponderación de Distancia Inversa o IDW) y determinar la densidad mínima de observaciones requerida para delimitar unidades de manejo de suelos y cultivos. Los datos fueron desglosados en 5 densidades de puntos (0.5-0.75-1-1.5-2 observaciones.ha-1). Los mapas obtenidos fueron contrastados con un set de observaciones reservadas específicamente con el fin de comparar la capacidad de predicción de estos. Se utilizaron estadísticos como el Promedio Cuadrado del Error (PCE), el Estimador de predicción (E) y el coeficiente de determinación para regresiones lineales y polinómicas. Se realizaron mapas de error para identificar la variabilidad de la predicción. Los interpoladores no presentaron diferencias marcadas en su exactitud, pero sí lo hizo la densidad de observaciones. Por su simplicidad relativa y una ligera tendencia a lograr mejores valores en los estadísticos utilizados, se sugiere el uso de IDW. Para la delimitación de unidades homogéneas de manejo en función de la profundidad de suelo se adoptó un mínimo de 1 observación ha-1, recomendándose analizar la conveniencia de utilizar una densidad mayor de observaciones (1,5-2 ha-1) en sectores complejos, de pobre estimación, que coincidieron con suelos de escasa profundidad. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 2017-06-22T17:50:25Z 2017-06-22T17:50:25Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/453 http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1669-23142015000300011 |
url |
http://hdl.handle.net/20.500.12123/453 http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1669-23142015000300011 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Gerencia de Comunicación e Imagen Institucional, DNA SICC, INTA |
publisher.none.fl_str_mv |
Gerencia de Comunicación e Imagen Institucional, DNA SICC, INTA |
dc.source.none.fl_str_mv |
RIA, 41 (3) : 309-316 reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619114511859712 |
score |
12.559606 |