Microbial activity effect on aggregate stability after residue addition in a Mollisol and a Vertisol in the Pampas, Argentina
- Autores
- Novelli, Leonardo Esteban; Hass, Walter L.; Benintende, Silvia M.; Caviglia, Octavio
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- Crop residue addition to the soil promotes an increase in microbial activity and, as a consequence, may improve soil aggregate stability. However, this effect may be different in soils with contrasting aggregation agents. The aim of this study was to evaluate, in an incubation experiment, the role of microbial activity on soil aggregate stability after crop residue addition in two soils with contrasting clay mineralogy. Soybean and maize crop residues were added with three different frequencies on a Mollisol and a Vertisol, which were incubated during a 120-days period. It was studied the dynamics of soil aggregate stability after application of a fast wetting (MWDfw), slow wetting (MWDsw) and stirring after prewetting treatment (MWDst) which evaluates three different breakdown mechanism, i.e., slacking, microcracking and mechanical breakdown, respectively. Microbial activity dynamic was evaluated through measurements of soil respiration rate, microbial biomass-C (MBC) and hot-water extractable carbohydrate-C (HWEC). The Vertisol showed higher resistance to slaking (59% higher) but lower resistance to mechanical breakdown (92% lower) and microcracking (102% lower) than the Mollisol, with a scarce effect of residue quality and addition frequency. The discrete changes recorded in MWDfw throughout the experiment, were positively associated with changes in cumulative respiration (P < 0.001), MBC (P < 0.05) y HWEC (P < 0.05) in the Mollisol, and only with changes in MBC in the Vertisol (P < 0.05). Also, the small changes in MWDst were weakly and positively associated (P < 0.05) with changes in cumulative respiration in the Mollisol but not in the Vertisol. However, changes in MWDsw were closely associated with changes in cumulative soil respiration rate (P < 0.0001) and MBC (P < 0.001) in both soils, and with HWEC only in the Mollisol (P < 0.0001), with a higher effect on these variables than the other aggregate stability test. However, while in the Vertisol the increase in MWDsw as a function of cumulative soil respiration was lineal, in the Mollisol it was detected an evident increase in MWDsw up to a threshold of 500 μg C-CO2 g soil−1 of cumulative soil respiration. Similarly, changes in MWDsw associated with changes in MBC were higher in the Mollisol than in the Vertisol (i.e. 0.018 v. 0.004 mm of MWDsw per unit of MBC). Thus, this research added new evidence about the contrasting role of transitory aggregation agents that are provided by microbial activity on aggregate stability in two contrasting soils such as a Mollisol and a Vertisol.
EEA Paraná
Fil: Novelli, Leonardo Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hass, Walter L. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina
Fil: Benintende, Silvia M. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina
Fil: Caviglia, Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina - Fuente
- Geoderma Regional 23 : e00346 (December 2020)
- Materia
-
Tipos de Suelos
Residuos de Cosechas
Molisoles
Vertisoles
Unidades Estructurales de Suelos
Biomasa
Soil Types
Crop Residues
Mollisols
Vertisols
Soil Structural Units
Biomass
Región Pampeana - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/8195
Ver los metadatos del registro completo
id |
INTADig_7a4fa3d1cdb561e3be5b0835ecced7d1 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/8195 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Microbial activity effect on aggregate stability after residue addition in a Mollisol and a Vertisol in the Pampas, ArgentinaNovelli, Leonardo EstebanHass, Walter L.Benintende, Silvia M.Caviglia, OctavioTipos de SuelosResiduos de CosechasMolisolesVertisolesUnidades Estructurales de SuelosBiomasaSoil TypesCrop ResiduesMollisolsVertisolsSoil Structural UnitsBiomassRegión PampeanaCrop residue addition to the soil promotes an increase in microbial activity and, as a consequence, may improve soil aggregate stability. However, this effect may be different in soils with contrasting aggregation agents. The aim of this study was to evaluate, in an incubation experiment, the role of microbial activity on soil aggregate stability after crop residue addition in two soils with contrasting clay mineralogy. Soybean and maize crop residues were added with three different frequencies on a Mollisol and a Vertisol, which were incubated during a 120-days period. It was studied the dynamics of soil aggregate stability after application of a fast wetting (MWDfw), slow wetting (MWDsw) and stirring after prewetting treatment (MWDst) which evaluates three different breakdown mechanism, i.e., slacking, microcracking and mechanical breakdown, respectively. Microbial activity dynamic was evaluated through measurements of soil respiration rate, microbial biomass-C (MBC) and hot-water extractable carbohydrate-C (HWEC). The Vertisol showed higher resistance to slaking (59% higher) but lower resistance to mechanical breakdown (92% lower) and microcracking (102% lower) than the Mollisol, with a scarce effect of residue quality and addition frequency. The discrete changes recorded in MWDfw throughout the experiment, were positively associated with changes in cumulative respiration (P < 0.001), MBC (P < 0.05) y HWEC (P < 0.05) in the Mollisol, and only with changes in MBC in the Vertisol (P < 0.05). Also, the small changes in MWDst were weakly and positively associated (P < 0.05) with changes in cumulative respiration in the Mollisol but not in the Vertisol. However, changes in MWDsw were closely associated with changes in cumulative soil respiration rate (P < 0.0001) and MBC (P < 0.001) in both soils, and with HWEC only in the Mollisol (P < 0.0001), with a higher effect on these variables than the other aggregate stability test. However, while in the Vertisol the increase in MWDsw as a function of cumulative soil respiration was lineal, in the Mollisol it was detected an evident increase in MWDsw up to a threshold of 500 μg C-CO2 g soil−1 of cumulative soil respiration. Similarly, changes in MWDsw associated with changes in MBC were higher in the Mollisol than in the Vertisol (i.e. 0.018 v. 0.004 mm of MWDsw per unit of MBC). Thus, this research added new evidence about the contrasting role of transitory aggregation agents that are provided by microbial activity on aggregate stability in two contrasting soils such as a Mollisol and a Vertisol.EEA ParanáFil: Novelli, Leonardo Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hass, Walter L. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaFil: Benintende, Silvia M. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaFil: Caviglia, Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaElsevierinfo:eu-repo/date/embargoEnd/2021-11-052020-11-05T17:00:32Z2020-11-05T17:00:32Z2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/8195https://www.sciencedirect.com/science/article/abs/pii/S235200942030095X2352-0094https://doi.org/10.1016/j.geodrs.2020.e00346Geoderma Regional 23 : e00346 (December 2020)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-04T09:48:40Zoai:localhost:20.500.12123/8195instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:48:41.473INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Microbial activity effect on aggregate stability after residue addition in a Mollisol and a Vertisol in the Pampas, Argentina |
title |
Microbial activity effect on aggregate stability after residue addition in a Mollisol and a Vertisol in the Pampas, Argentina |
spellingShingle |
Microbial activity effect on aggregate stability after residue addition in a Mollisol and a Vertisol in the Pampas, Argentina Novelli, Leonardo Esteban Tipos de Suelos Residuos de Cosechas Molisoles Vertisoles Unidades Estructurales de Suelos Biomasa Soil Types Crop Residues Mollisols Vertisols Soil Structural Units Biomass Región Pampeana |
title_short |
Microbial activity effect on aggregate stability after residue addition in a Mollisol and a Vertisol in the Pampas, Argentina |
title_full |
Microbial activity effect on aggregate stability after residue addition in a Mollisol and a Vertisol in the Pampas, Argentina |
title_fullStr |
Microbial activity effect on aggregate stability after residue addition in a Mollisol and a Vertisol in the Pampas, Argentina |
title_full_unstemmed |
Microbial activity effect on aggregate stability after residue addition in a Mollisol and a Vertisol in the Pampas, Argentina |
title_sort |
Microbial activity effect on aggregate stability after residue addition in a Mollisol and a Vertisol in the Pampas, Argentina |
dc.creator.none.fl_str_mv |
Novelli, Leonardo Esteban Hass, Walter L. Benintende, Silvia M. Caviglia, Octavio |
author |
Novelli, Leonardo Esteban |
author_facet |
Novelli, Leonardo Esteban Hass, Walter L. Benintende, Silvia M. Caviglia, Octavio |
author_role |
author |
author2 |
Hass, Walter L. Benintende, Silvia M. Caviglia, Octavio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Tipos de Suelos Residuos de Cosechas Molisoles Vertisoles Unidades Estructurales de Suelos Biomasa Soil Types Crop Residues Mollisols Vertisols Soil Structural Units Biomass Región Pampeana |
topic |
Tipos de Suelos Residuos de Cosechas Molisoles Vertisoles Unidades Estructurales de Suelos Biomasa Soil Types Crop Residues Mollisols Vertisols Soil Structural Units Biomass Región Pampeana |
dc.description.none.fl_txt_mv |
Crop residue addition to the soil promotes an increase in microbial activity and, as a consequence, may improve soil aggregate stability. However, this effect may be different in soils with contrasting aggregation agents. The aim of this study was to evaluate, in an incubation experiment, the role of microbial activity on soil aggregate stability after crop residue addition in two soils with contrasting clay mineralogy. Soybean and maize crop residues were added with three different frequencies on a Mollisol and a Vertisol, which were incubated during a 120-days period. It was studied the dynamics of soil aggregate stability after application of a fast wetting (MWDfw), slow wetting (MWDsw) and stirring after prewetting treatment (MWDst) which evaluates three different breakdown mechanism, i.e., slacking, microcracking and mechanical breakdown, respectively. Microbial activity dynamic was evaluated through measurements of soil respiration rate, microbial biomass-C (MBC) and hot-water extractable carbohydrate-C (HWEC). The Vertisol showed higher resistance to slaking (59% higher) but lower resistance to mechanical breakdown (92% lower) and microcracking (102% lower) than the Mollisol, with a scarce effect of residue quality and addition frequency. The discrete changes recorded in MWDfw throughout the experiment, were positively associated with changes in cumulative respiration (P < 0.001), MBC (P < 0.05) y HWEC (P < 0.05) in the Mollisol, and only with changes in MBC in the Vertisol (P < 0.05). Also, the small changes in MWDst were weakly and positively associated (P < 0.05) with changes in cumulative respiration in the Mollisol but not in the Vertisol. However, changes in MWDsw were closely associated with changes in cumulative soil respiration rate (P < 0.0001) and MBC (P < 0.001) in both soils, and with HWEC only in the Mollisol (P < 0.0001), with a higher effect on these variables than the other aggregate stability test. However, while in the Vertisol the increase in MWDsw as a function of cumulative soil respiration was lineal, in the Mollisol it was detected an evident increase in MWDsw up to a threshold of 500 μg C-CO2 g soil−1 of cumulative soil respiration. Similarly, changes in MWDsw associated with changes in MBC were higher in the Mollisol than in the Vertisol (i.e. 0.018 v. 0.004 mm of MWDsw per unit of MBC). Thus, this research added new evidence about the contrasting role of transitory aggregation agents that are provided by microbial activity on aggregate stability in two contrasting soils such as a Mollisol and a Vertisol. EEA Paraná Fil: Novelli, Leonardo Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hass, Walter L. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina Fil: Benintende, Silvia M. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina Fil: Caviglia, Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina |
description |
Crop residue addition to the soil promotes an increase in microbial activity and, as a consequence, may improve soil aggregate stability. However, this effect may be different in soils with contrasting aggregation agents. The aim of this study was to evaluate, in an incubation experiment, the role of microbial activity on soil aggregate stability after crop residue addition in two soils with contrasting clay mineralogy. Soybean and maize crop residues were added with three different frequencies on a Mollisol and a Vertisol, which were incubated during a 120-days period. It was studied the dynamics of soil aggregate stability after application of a fast wetting (MWDfw), slow wetting (MWDsw) and stirring after prewetting treatment (MWDst) which evaluates three different breakdown mechanism, i.e., slacking, microcracking and mechanical breakdown, respectively. Microbial activity dynamic was evaluated through measurements of soil respiration rate, microbial biomass-C (MBC) and hot-water extractable carbohydrate-C (HWEC). The Vertisol showed higher resistance to slaking (59% higher) but lower resistance to mechanical breakdown (92% lower) and microcracking (102% lower) than the Mollisol, with a scarce effect of residue quality and addition frequency. The discrete changes recorded in MWDfw throughout the experiment, were positively associated with changes in cumulative respiration (P < 0.001), MBC (P < 0.05) y HWEC (P < 0.05) in the Mollisol, and only with changes in MBC in the Vertisol (P < 0.05). Also, the small changes in MWDst were weakly and positively associated (P < 0.05) with changes in cumulative respiration in the Mollisol but not in the Vertisol. However, changes in MWDsw were closely associated with changes in cumulative soil respiration rate (P < 0.0001) and MBC (P < 0.001) in both soils, and with HWEC only in the Mollisol (P < 0.0001), with a higher effect on these variables than the other aggregate stability test. However, while in the Vertisol the increase in MWDsw as a function of cumulative soil respiration was lineal, in the Mollisol it was detected an evident increase in MWDsw up to a threshold of 500 μg C-CO2 g soil−1 of cumulative soil respiration. Similarly, changes in MWDsw associated with changes in MBC were higher in the Mollisol than in the Vertisol (i.e. 0.018 v. 0.004 mm of MWDsw per unit of MBC). Thus, this research added new evidence about the contrasting role of transitory aggregation agents that are provided by microbial activity on aggregate stability in two contrasting soils such as a Mollisol and a Vertisol. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-05T17:00:32Z 2020-11-05T17:00:32Z 2020-12 info:eu-repo/date/embargoEnd/2021-11-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/8195 https://www.sciencedirect.com/science/article/abs/pii/S235200942030095X 2352-0094 https://doi.org/10.1016/j.geodrs.2020.e00346 |
url |
http://hdl.handle.net/20.500.12123/8195 https://www.sciencedirect.com/science/article/abs/pii/S235200942030095X https://doi.org/10.1016/j.geodrs.2020.e00346 |
identifier_str_mv |
2352-0094 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Geoderma Regional 23 : e00346 (December 2020) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341382389235712 |
score |
12.623145 |