Crop nitrogen status of early- and late-sown maize at different plant densities

Autores
Maltese, Nicolás; Maddonni, Gustavo Angel; Melchiori, Ricardo Jose; Ferreyra, Juan Matías; Caviglia, Octavio
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In maize (Zea mays L.) crops, nitrogen (N) status at silking (R1) has been used to predict grain yield (GY) response to N fertilization and to develop strategies to manage crop nutrition in order to match N supply with crop demand during growing season, such as late N fertilizations. Crop N status can be estimated by N nutrition index (NNI), which is based on actual and critical N concentration in crop biomass. Optical measurements of N concentration (e.g. SPAD readings) of the leaf blade subtending primary ear have also been used as a proxy of crop N status. Sowing date (SD) and N rates could affect soil N availability and hence crop N uptake at R1. Additionally, the effects of SD and its interaction with plant density (PD), N rates and hybrids (H) on N uptake (NuptP) and particularly on N partitioning in leaf-blades, stem + sheaths and ears could affect SPADs readings. We hypothesized that variations of GY by crop N status at R1 promoted by SD, PD and H, would be better predicted by NNI than by SPAD readings. In this study, two Hs (DK 70−10 VT3P and DK 73−10 VT3P) were cropped in two contrasting SD (early and late) in Paraná, Argentina (31°44′ S 60°32′ W) at three PD (5, 7 and 9 pl m−2) with three N rates (0, 90 and 270 kg N ha-1) in order to evaluate the effect of treatments on: i) N availability, N uptake at the plant and crop level, N partitioning in leaf-blades, stem + sheaths and ears, SPAD readings and NNI at R1, and ii) the relationships among N availability and N uptake at the plant and crop level, NNI, SPAD, and GY. N concentration of leaf-blades was negatively affected by PD, but this reduction was attenuated by N rates, especially in late SD (N x PD x SD interaction). Hence, in early SD, some data of both Hs corresponding to 270 N yielded low SPAD values for NNI greater than 0.86. Consequently, crop N status was better reflected by NNI than by SPAD readings, because NNI considers N stored in the whole plant. NNI at R1 adequately described relative GY variations promoted by SD, PD, N rates and, Hs, i.e. NNI was a more meaningful crop status index than SPAD readings. Overall, our study contributes to understanding mechanisms that regulate crop N status affected by agronomical practices and adds insights to explore in late N fertilization of maize crops.
EEA Paraná
Fil: Maltese, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina
Fil: Maddonni, Gustavo Angel. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Cerealicultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Fisiología y Ecología Vinculado a la Agricultura; Argentina
Fil: Melchiori, Ricardo Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina.
Fil: Ferreyra, J.M. Bayer – Crop Science. Market Development LATAM; Argentina
Fil: Caviglia, Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina
Fuente
Field Crops Research 258 : 107965 (November 2020)
Materia
Maíz
Nitrógeno
Fecha de Siembra
Espaciamiento
Maize
Nitrogen
Sowing Date
Spacing
Densidad de Siembra
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/8086

id INTADig_74f8fe0a342ccaef0e88593e05f9af92
oai_identifier_str oai:localhost:20.500.12123/8086
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Crop nitrogen status of early- and late-sown maize at different plant densitiesMaltese, NicolásMaddonni, Gustavo AngelMelchiori, Ricardo JoseFerreyra, Juan MatíasCaviglia, OctavioMaízNitrógenoFecha de SiembraEspaciamientoMaizeNitrogenSowing DateSpacingDensidad de SiembraIn maize (Zea mays L.) crops, nitrogen (N) status at silking (R1) has been used to predict grain yield (GY) response to N fertilization and to develop strategies to manage crop nutrition in order to match N supply with crop demand during growing season, such as late N fertilizations. Crop N status can be estimated by N nutrition index (NNI), which is based on actual and critical N concentration in crop biomass. Optical measurements of N concentration (e.g. SPAD readings) of the leaf blade subtending primary ear have also been used as a proxy of crop N status. Sowing date (SD) and N rates could affect soil N availability and hence crop N uptake at R1. Additionally, the effects of SD and its interaction with plant density (PD), N rates and hybrids (H) on N uptake (NuptP) and particularly on N partitioning in leaf-blades, stem + sheaths and ears could affect SPADs readings. We hypothesized that variations of GY by crop N status at R1 promoted by SD, PD and H, would be better predicted by NNI than by SPAD readings. In this study, two Hs (DK 70−10 VT3P and DK 73−10 VT3P) were cropped in two contrasting SD (early and late) in Paraná, Argentina (31°44′ S 60°32′ W) at three PD (5, 7 and 9 pl m−2) with three N rates (0, 90 and 270 kg N ha-1) in order to evaluate the effect of treatments on: i) N availability, N uptake at the plant and crop level, N partitioning in leaf-blades, stem + sheaths and ears, SPAD readings and NNI at R1, and ii) the relationships among N availability and N uptake at the plant and crop level, NNI, SPAD, and GY. N concentration of leaf-blades was negatively affected by PD, but this reduction was attenuated by N rates, especially in late SD (N x PD x SD interaction). Hence, in early SD, some data of both Hs corresponding to 270 N yielded low SPAD values for NNI greater than 0.86. Consequently, crop N status was better reflected by NNI than by SPAD readings, because NNI considers N stored in the whole plant. NNI at R1 adequately described relative GY variations promoted by SD, PD, N rates and, Hs, i.e. NNI was a more meaningful crop status index than SPAD readings. Overall, our study contributes to understanding mechanisms that regulate crop N status affected by agronomical practices and adds insights to explore in late N fertilization of maize crops.EEA ParanáFil: Maltese, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaFil: Maddonni, Gustavo Angel. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Cerealicultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Fisiología y Ecología Vinculado a la Agricultura; ArgentinaFil: Melchiori, Ricardo Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina.Fil: Ferreyra, J.M. Bayer – Crop Science. Market Development LATAM; ArgentinaFil: Caviglia, Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaElsevier2020-10-20T14:19:15Z2020-10-20T14:19:15Z2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/8086https://www.sciencedirect.com/science/article/abs/pii/S03784290203124910378-42901872-6852https://doi.org/10.1016/j.fcr.2020.107965Field Crops Research 258 : 107965 (November 2020)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-04T09:48:39Zoai:localhost:20.500.12123/8086instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:48:39.958INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Crop nitrogen status of early- and late-sown maize at different plant densities
title Crop nitrogen status of early- and late-sown maize at different plant densities
spellingShingle Crop nitrogen status of early- and late-sown maize at different plant densities
Maltese, Nicolás
Maíz
Nitrógeno
Fecha de Siembra
Espaciamiento
Maize
Nitrogen
Sowing Date
Spacing
Densidad de Siembra
title_short Crop nitrogen status of early- and late-sown maize at different plant densities
title_full Crop nitrogen status of early- and late-sown maize at different plant densities
title_fullStr Crop nitrogen status of early- and late-sown maize at different plant densities
title_full_unstemmed Crop nitrogen status of early- and late-sown maize at different plant densities
title_sort Crop nitrogen status of early- and late-sown maize at different plant densities
dc.creator.none.fl_str_mv Maltese, Nicolás
Maddonni, Gustavo Angel
Melchiori, Ricardo Jose
Ferreyra, Juan Matías
Caviglia, Octavio
author Maltese, Nicolás
author_facet Maltese, Nicolás
Maddonni, Gustavo Angel
Melchiori, Ricardo Jose
Ferreyra, Juan Matías
Caviglia, Octavio
author_role author
author2 Maddonni, Gustavo Angel
Melchiori, Ricardo Jose
Ferreyra, Juan Matías
Caviglia, Octavio
author2_role author
author
author
author
dc.subject.none.fl_str_mv Maíz
Nitrógeno
Fecha de Siembra
Espaciamiento
Maize
Nitrogen
Sowing Date
Spacing
Densidad de Siembra
topic Maíz
Nitrógeno
Fecha de Siembra
Espaciamiento
Maize
Nitrogen
Sowing Date
Spacing
Densidad de Siembra
dc.description.none.fl_txt_mv In maize (Zea mays L.) crops, nitrogen (N) status at silking (R1) has been used to predict grain yield (GY) response to N fertilization and to develop strategies to manage crop nutrition in order to match N supply with crop demand during growing season, such as late N fertilizations. Crop N status can be estimated by N nutrition index (NNI), which is based on actual and critical N concentration in crop biomass. Optical measurements of N concentration (e.g. SPAD readings) of the leaf blade subtending primary ear have also been used as a proxy of crop N status. Sowing date (SD) and N rates could affect soil N availability and hence crop N uptake at R1. Additionally, the effects of SD and its interaction with plant density (PD), N rates and hybrids (H) on N uptake (NuptP) and particularly on N partitioning in leaf-blades, stem + sheaths and ears could affect SPADs readings. We hypothesized that variations of GY by crop N status at R1 promoted by SD, PD and H, would be better predicted by NNI than by SPAD readings. In this study, two Hs (DK 70−10 VT3P and DK 73−10 VT3P) were cropped in two contrasting SD (early and late) in Paraná, Argentina (31°44′ S 60°32′ W) at three PD (5, 7 and 9 pl m−2) with three N rates (0, 90 and 270 kg N ha-1) in order to evaluate the effect of treatments on: i) N availability, N uptake at the plant and crop level, N partitioning in leaf-blades, stem + sheaths and ears, SPAD readings and NNI at R1, and ii) the relationships among N availability and N uptake at the plant and crop level, NNI, SPAD, and GY. N concentration of leaf-blades was negatively affected by PD, but this reduction was attenuated by N rates, especially in late SD (N x PD x SD interaction). Hence, in early SD, some data of both Hs corresponding to 270 N yielded low SPAD values for NNI greater than 0.86. Consequently, crop N status was better reflected by NNI than by SPAD readings, because NNI considers N stored in the whole plant. NNI at R1 adequately described relative GY variations promoted by SD, PD, N rates and, Hs, i.e. NNI was a more meaningful crop status index than SPAD readings. Overall, our study contributes to understanding mechanisms that regulate crop N status affected by agronomical practices and adds insights to explore in late N fertilization of maize crops.
EEA Paraná
Fil: Maltese, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina
Fil: Maddonni, Gustavo Angel. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Cerealicultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Fisiología y Ecología Vinculado a la Agricultura; Argentina
Fil: Melchiori, Ricardo Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina.
Fil: Ferreyra, J.M. Bayer – Crop Science. Market Development LATAM; Argentina
Fil: Caviglia, Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina
description In maize (Zea mays L.) crops, nitrogen (N) status at silking (R1) has been used to predict grain yield (GY) response to N fertilization and to develop strategies to manage crop nutrition in order to match N supply with crop demand during growing season, such as late N fertilizations. Crop N status can be estimated by N nutrition index (NNI), which is based on actual and critical N concentration in crop biomass. Optical measurements of N concentration (e.g. SPAD readings) of the leaf blade subtending primary ear have also been used as a proxy of crop N status. Sowing date (SD) and N rates could affect soil N availability and hence crop N uptake at R1. Additionally, the effects of SD and its interaction with plant density (PD), N rates and hybrids (H) on N uptake (NuptP) and particularly on N partitioning in leaf-blades, stem + sheaths and ears could affect SPADs readings. We hypothesized that variations of GY by crop N status at R1 promoted by SD, PD and H, would be better predicted by NNI than by SPAD readings. In this study, two Hs (DK 70−10 VT3P and DK 73−10 VT3P) were cropped in two contrasting SD (early and late) in Paraná, Argentina (31°44′ S 60°32′ W) at three PD (5, 7 and 9 pl m−2) with three N rates (0, 90 and 270 kg N ha-1) in order to evaluate the effect of treatments on: i) N availability, N uptake at the plant and crop level, N partitioning in leaf-blades, stem + sheaths and ears, SPAD readings and NNI at R1, and ii) the relationships among N availability and N uptake at the plant and crop level, NNI, SPAD, and GY. N concentration of leaf-blades was negatively affected by PD, but this reduction was attenuated by N rates, especially in late SD (N x PD x SD interaction). Hence, in early SD, some data of both Hs corresponding to 270 N yielded low SPAD values for NNI greater than 0.86. Consequently, crop N status was better reflected by NNI than by SPAD readings, because NNI considers N stored in the whole plant. NNI at R1 adequately described relative GY variations promoted by SD, PD, N rates and, Hs, i.e. NNI was a more meaningful crop status index than SPAD readings. Overall, our study contributes to understanding mechanisms that regulate crop N status affected by agronomical practices and adds insights to explore in late N fertilization of maize crops.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-20T14:19:15Z
2020-10-20T14:19:15Z
2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/8086
https://www.sciencedirect.com/science/article/abs/pii/S0378429020312491
0378-4290
1872-6852
https://doi.org/10.1016/j.fcr.2020.107965
url http://hdl.handle.net/20.500.12123/8086
https://www.sciencedirect.com/science/article/abs/pii/S0378429020312491
https://doi.org/10.1016/j.fcr.2020.107965
identifier_str_mv 0378-4290
1872-6852
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Field Crops Research 258 : 107965 (November 2020)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341381922619392
score 12.623145