Soil Organic Carbon Stock Estimates with Uncertainty across Latin America

Autores
Guevara, Mario; Olmedo, Guillermo Federico; Stell, Emma; Yigini, Yusuf; Hernández Arelano, Carlos; Arevalo, Gloria; Arroyo-Cruz, Carlos Eduardo; Bolivar, Adriana; Bunning, Sally; Bustamante Canas, Nelson; Cruz-Gaistardo, Carlos Omar; Davila, Fabian; Dell Acqua, Martín; Encina, Arnulfa; Fontes, Fernanda; Hernández Herrera, José A.; Pereira, Gonzalo; Schulz, Guillermo; Spence, Adrian; Vazques, Gustavo
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This dataset provides 5 x 5 km gridded estimates of soil organic carbon (SOC) across Latin America that were derived from existing point soil characterization data and compiled environmental prediction factors for SOC. This dataset is representative for the period between 1980 to 2000s corresponding with the highest density of observations available in the WoSIS system and the covariates used as prediction factors for soil organic carbon across Latin America. SOC stocks (kg/m2) were estimated for the SOC and bulk density point measurements and a spatially explicit measure of the SOC estimation error was also calculated. A modeling ensemble, using a linear combination of five statistical methods (regression Kriging, random forest, kernel weighted nearest neighbors, partial least squared regression and support vector machines) was applied to the SOC stock data at (1) country-specific and (2) regional scales to develop gridded SOC estimates (kg/m2) for all of Latin America. Uncertainty estimates are provided for the two model predictions based on independent model residuals and their full conditional response to the SOC prediction factors. These SOC estimates provide a reproducible example, on country-specific and regional scales, for digital soil mapping across Latin America and contribute to reducing the uncertainty of SOC estimates and improving the parameterization of global models across Latin America. This dataset includes six data files in GeoTIFF (.tif) format at 5 km resolution across Latin America, including: (1) a mosaic of country-specific soil organic carbon estimates, (2) model uncertainty derived for the country-specific estimates, (3) a mosaic of the regional soil organic carbon estimates, (4) model uncertainty derived for the regional estimates, and (5-6) two trend maps of approximate errors associated with the SOC stock calculation method. There is one data file in comma-separated format (.csv) of the point soil characterization data with calculated SOC stock estimates. Four companion files include: a 133-band GeoTiff containing the environmental predictor variables for SOC across Latin America, a .csv file with descriptions of the environmental variables, a shapefile (.shp) of the point soil characterization data with SOC stock estimates and a *.kmz file to display the same.
Fil: Guevara, Mario. University of Delaware. Department of Plant and Soil Sciences; Estados Unidos
Fil: Olmedo. Guillermo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina. FAO; Italia
Fil: Stell, Emma. University of Delaware. Department of Plant and Soil Sciences; Estados Unidos
Fil: Yigini, Yusuf. FAO; Italia
Fil: Hernández Arellano, Carlos. Instituto Nacional de Estadística y Geografía; México
Fil: Arevalo, Gloria. Zamorano University of Honduras; Honduras. Asociación Hondureña de la Ciencia del Suelo; Honduras
Fil: Arroyo-Cruz, Carlos Eduardo. National Commission for the Knowledge and Use of Biodiversity; México
Fil: Bolivar, Adriana. Instituto Geográfico Agustín Codazzi. Subdirección Agrología; Colombia
Fil: Bunning, Sally. FAO. Oficina Regional de la FAO para América Latina y el Caribe; Chile
Fil: Bustamante Cañas, Nelson. Servicio Agrícola y Ganadero; Chile
Fil: Cruz-Gaistardo, Calos Omar. Instituto Nacional de Estadística y Geografía; México
Fil: Dell Acqua, Martin. Dirección General de Recursos Naturales, Ministerio de Ganadería, Agricultura y Pesca; Uruguay
Fil: Davila, Fabian. Ministerio de Ganadería, Agricultura y Pesca, Dirección General de Recursos Naturales; Uruguay
Fil: Encina, Arnulfo. Universidad Nacional de Asunción. Facultad de Ciencias Agrarias; Paraguay
Fil: Fontes, Fernando. Ministerio de Ganadería, Agricultura y Pesca, Dirección General de Recursos Naturales; Uruguay
Fil: Hernández Herrera, José Antonio. Universidad Autónoma Agraria Antonio Narro Unidad Laguna; México
Fil: Pereira, Gonzalo. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay
Fil: Schulz, Guillermo Andrés. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Spence, Adrian. University of the West Indies. International Centre for Environmental and Nuclear Sciences; Jamaica
Fil: Vasques, Gustavo M. Embrapa Solos; Brasil
Fuente
ORNL-DAAC News : 1-6. (03 july 2019)
Materia
Carbono Orgánico del Suelo
América Latina
Soil Organic Carbon
Factores de Predicciones
Error de Estimación
Prediction Factors
Estimation Error
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/17694

id INTADig_7224f64973ea7675732358e3590f2f54
oai_identifier_str oai:localhost:20.500.12123/17694
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Soil Organic Carbon Stock Estimates with Uncertainty across Latin AmericaGuevara, MarioOlmedo, Guillermo FedericoStell, EmmaYigini, YusufHernández Arelano, CarlosArevalo, GloriaArroyo-Cruz, Carlos EduardoBolivar, AdrianaBunning, SallyBustamante Canas, NelsonCruz-Gaistardo, Carlos OmarDavila, FabianDell Acqua, MartínEncina, ArnulfaFontes, FernandaHernández Herrera, José A.Pereira, GonzaloSchulz, GuillermoSpence, AdrianVazques, GustavoCarbono Orgánico del SueloAmérica LatinaSoil Organic CarbonFactores de PrediccionesError de EstimaciónPrediction FactorsEstimation ErrorThis dataset provides 5 x 5 km gridded estimates of soil organic carbon (SOC) across Latin America that were derived from existing point soil characterization data and compiled environmental prediction factors for SOC. This dataset is representative for the period between 1980 to 2000s corresponding with the highest density of observations available in the WoSIS system and the covariates used as prediction factors for soil organic carbon across Latin America. SOC stocks (kg/m2) were estimated for the SOC and bulk density point measurements and a spatially explicit measure of the SOC estimation error was also calculated. A modeling ensemble, using a linear combination of five statistical methods (regression Kriging, random forest, kernel weighted nearest neighbors, partial least squared regression and support vector machines) was applied to the SOC stock data at (1) country-specific and (2) regional scales to develop gridded SOC estimates (kg/m2) for all of Latin America. Uncertainty estimates are provided for the two model predictions based on independent model residuals and their full conditional response to the SOC prediction factors. These SOC estimates provide a reproducible example, on country-specific and regional scales, for digital soil mapping across Latin America and contribute to reducing the uncertainty of SOC estimates and improving the parameterization of global models across Latin America. This dataset includes six data files in GeoTIFF (.tif) format at 5 km resolution across Latin America, including: (1) a mosaic of country-specific soil organic carbon estimates, (2) model uncertainty derived for the country-specific estimates, (3) a mosaic of the regional soil organic carbon estimates, (4) model uncertainty derived for the regional estimates, and (5-6) two trend maps of approximate errors associated with the SOC stock calculation method. There is one data file in comma-separated format (.csv) of the point soil characterization data with calculated SOC stock estimates. Four companion files include: a 133-band GeoTiff containing the environmental predictor variables for SOC across Latin America, a .csv file with descriptions of the environmental variables, a shapefile (.shp) of the point soil characterization data with SOC stock estimates and a *.kmz file to display the same.Fil: Guevara, Mario. University of Delaware. Department of Plant and Soil Sciences; Estados UnidosFil: Olmedo. Guillermo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina. FAO; ItaliaFil: Stell, Emma. University of Delaware. Department of Plant and Soil Sciences; Estados UnidosFil: Yigini, Yusuf. FAO; ItaliaFil: Hernández Arellano, Carlos. Instituto Nacional de Estadística y Geografía; MéxicoFil: Arevalo, Gloria. Zamorano University of Honduras; Honduras. Asociación Hondureña de la Ciencia del Suelo; HondurasFil: Arroyo-Cruz, Carlos Eduardo. National Commission for the Knowledge and Use of Biodiversity; MéxicoFil: Bolivar, Adriana. Instituto Geográfico Agustín Codazzi. Subdirección Agrología; ColombiaFil: Bunning, Sally. FAO. Oficina Regional de la FAO para América Latina y el Caribe; ChileFil: Bustamante Cañas, Nelson. Servicio Agrícola y Ganadero; ChileFil: Cruz-Gaistardo, Calos Omar. Instituto Nacional de Estadística y Geografía; MéxicoFil: Dell Acqua, Martin. Dirección General de Recursos Naturales, Ministerio de Ganadería, Agricultura y Pesca; UruguayFil: Davila, Fabian. Ministerio de Ganadería, Agricultura y Pesca, Dirección General de Recursos Naturales; UruguayFil: Encina, Arnulfo. Universidad Nacional de Asunción. Facultad de Ciencias Agrarias; ParaguayFil: Fontes, Fernando. Ministerio de Ganadería, Agricultura y Pesca, Dirección General de Recursos Naturales; UruguayFil: Hernández Herrera, José Antonio. Universidad Autónoma Agraria Antonio Narro Unidad Laguna; MéxicoFil: Pereira, Gonzalo. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; UruguayFil: Schulz, Guillermo Andrés. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Spence, Adrian. University of the West Indies. International Centre for Environmental and Nuclear Sciences; JamaicaFil: Vasques, Gustavo M. Embrapa Solos; BrasilORNL-DAAC2024-05-10T14:06:41Z2024-05-10T14:06:41Z2019-07-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/17694https://daac.ornl.gov/CMS/guides/Country_SOC_Latin_America.htmlhttps://doi.org/10.3334/ORNLDAAC/1615ORNL-DAAC News : 1-6. (03 july 2019)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:50:21Zoai:localhost:20.500.12123/17694instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:50:22.153INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Soil Organic Carbon Stock Estimates with Uncertainty across Latin America
title Soil Organic Carbon Stock Estimates with Uncertainty across Latin America
spellingShingle Soil Organic Carbon Stock Estimates with Uncertainty across Latin America
Guevara, Mario
Carbono Orgánico del Suelo
América Latina
Soil Organic Carbon
Factores de Predicciones
Error de Estimación
Prediction Factors
Estimation Error
title_short Soil Organic Carbon Stock Estimates with Uncertainty across Latin America
title_full Soil Organic Carbon Stock Estimates with Uncertainty across Latin America
title_fullStr Soil Organic Carbon Stock Estimates with Uncertainty across Latin America
title_full_unstemmed Soil Organic Carbon Stock Estimates with Uncertainty across Latin America
title_sort Soil Organic Carbon Stock Estimates with Uncertainty across Latin America
dc.creator.none.fl_str_mv Guevara, Mario
Olmedo, Guillermo Federico
Stell, Emma
Yigini, Yusuf
Hernández Arelano, Carlos
Arevalo, Gloria
Arroyo-Cruz, Carlos Eduardo
Bolivar, Adriana
Bunning, Sally
Bustamante Canas, Nelson
Cruz-Gaistardo, Carlos Omar
Davila, Fabian
Dell Acqua, Martín
Encina, Arnulfa
Fontes, Fernanda
Hernández Herrera, José A.
Pereira, Gonzalo
Schulz, Guillermo
Spence, Adrian
Vazques, Gustavo
author Guevara, Mario
author_facet Guevara, Mario
Olmedo, Guillermo Federico
Stell, Emma
Yigini, Yusuf
Hernández Arelano, Carlos
Arevalo, Gloria
Arroyo-Cruz, Carlos Eduardo
Bolivar, Adriana
Bunning, Sally
Bustamante Canas, Nelson
Cruz-Gaistardo, Carlos Omar
Davila, Fabian
Dell Acqua, Martín
Encina, Arnulfa
Fontes, Fernanda
Hernández Herrera, José A.
Pereira, Gonzalo
Schulz, Guillermo
Spence, Adrian
Vazques, Gustavo
author_role author
author2 Olmedo, Guillermo Federico
Stell, Emma
Yigini, Yusuf
Hernández Arelano, Carlos
Arevalo, Gloria
Arroyo-Cruz, Carlos Eduardo
Bolivar, Adriana
Bunning, Sally
Bustamante Canas, Nelson
Cruz-Gaistardo, Carlos Omar
Davila, Fabian
Dell Acqua, Martín
Encina, Arnulfa
Fontes, Fernanda
Hernández Herrera, José A.
Pereira, Gonzalo
Schulz, Guillermo
Spence, Adrian
Vazques, Gustavo
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Carbono Orgánico del Suelo
América Latina
Soil Organic Carbon
Factores de Predicciones
Error de Estimación
Prediction Factors
Estimation Error
topic Carbono Orgánico del Suelo
América Latina
Soil Organic Carbon
Factores de Predicciones
Error de Estimación
Prediction Factors
Estimation Error
dc.description.none.fl_txt_mv This dataset provides 5 x 5 km gridded estimates of soil organic carbon (SOC) across Latin America that were derived from existing point soil characterization data and compiled environmental prediction factors for SOC. This dataset is representative for the period between 1980 to 2000s corresponding with the highest density of observations available in the WoSIS system and the covariates used as prediction factors for soil organic carbon across Latin America. SOC stocks (kg/m2) were estimated for the SOC and bulk density point measurements and a spatially explicit measure of the SOC estimation error was also calculated. A modeling ensemble, using a linear combination of five statistical methods (regression Kriging, random forest, kernel weighted nearest neighbors, partial least squared regression and support vector machines) was applied to the SOC stock data at (1) country-specific and (2) regional scales to develop gridded SOC estimates (kg/m2) for all of Latin America. Uncertainty estimates are provided for the two model predictions based on independent model residuals and their full conditional response to the SOC prediction factors. These SOC estimates provide a reproducible example, on country-specific and regional scales, for digital soil mapping across Latin America and contribute to reducing the uncertainty of SOC estimates and improving the parameterization of global models across Latin America. This dataset includes six data files in GeoTIFF (.tif) format at 5 km resolution across Latin America, including: (1) a mosaic of country-specific soil organic carbon estimates, (2) model uncertainty derived for the country-specific estimates, (3) a mosaic of the regional soil organic carbon estimates, (4) model uncertainty derived for the regional estimates, and (5-6) two trend maps of approximate errors associated with the SOC stock calculation method. There is one data file in comma-separated format (.csv) of the point soil characterization data with calculated SOC stock estimates. Four companion files include: a 133-band GeoTiff containing the environmental predictor variables for SOC across Latin America, a .csv file with descriptions of the environmental variables, a shapefile (.shp) of the point soil characterization data with SOC stock estimates and a *.kmz file to display the same.
Fil: Guevara, Mario. University of Delaware. Department of Plant and Soil Sciences; Estados Unidos
Fil: Olmedo. Guillermo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina. FAO; Italia
Fil: Stell, Emma. University of Delaware. Department of Plant and Soil Sciences; Estados Unidos
Fil: Yigini, Yusuf. FAO; Italia
Fil: Hernández Arellano, Carlos. Instituto Nacional de Estadística y Geografía; México
Fil: Arevalo, Gloria. Zamorano University of Honduras; Honduras. Asociación Hondureña de la Ciencia del Suelo; Honduras
Fil: Arroyo-Cruz, Carlos Eduardo. National Commission for the Knowledge and Use of Biodiversity; México
Fil: Bolivar, Adriana. Instituto Geográfico Agustín Codazzi. Subdirección Agrología; Colombia
Fil: Bunning, Sally. FAO. Oficina Regional de la FAO para América Latina y el Caribe; Chile
Fil: Bustamante Cañas, Nelson. Servicio Agrícola y Ganadero; Chile
Fil: Cruz-Gaistardo, Calos Omar. Instituto Nacional de Estadística y Geografía; México
Fil: Dell Acqua, Martin. Dirección General de Recursos Naturales, Ministerio de Ganadería, Agricultura y Pesca; Uruguay
Fil: Davila, Fabian. Ministerio de Ganadería, Agricultura y Pesca, Dirección General de Recursos Naturales; Uruguay
Fil: Encina, Arnulfo. Universidad Nacional de Asunción. Facultad de Ciencias Agrarias; Paraguay
Fil: Fontes, Fernando. Ministerio de Ganadería, Agricultura y Pesca, Dirección General de Recursos Naturales; Uruguay
Fil: Hernández Herrera, José Antonio. Universidad Autónoma Agraria Antonio Narro Unidad Laguna; México
Fil: Pereira, Gonzalo. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay
Fil: Schulz, Guillermo Andrés. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Spence, Adrian. University of the West Indies. International Centre for Environmental and Nuclear Sciences; Jamaica
Fil: Vasques, Gustavo M. Embrapa Solos; Brasil
description This dataset provides 5 x 5 km gridded estimates of soil organic carbon (SOC) across Latin America that were derived from existing point soil characterization data and compiled environmental prediction factors for SOC. This dataset is representative for the period between 1980 to 2000s corresponding with the highest density of observations available in the WoSIS system and the covariates used as prediction factors for soil organic carbon across Latin America. SOC stocks (kg/m2) were estimated for the SOC and bulk density point measurements and a spatially explicit measure of the SOC estimation error was also calculated. A modeling ensemble, using a linear combination of five statistical methods (regression Kriging, random forest, kernel weighted nearest neighbors, partial least squared regression and support vector machines) was applied to the SOC stock data at (1) country-specific and (2) regional scales to develop gridded SOC estimates (kg/m2) for all of Latin America. Uncertainty estimates are provided for the two model predictions based on independent model residuals and their full conditional response to the SOC prediction factors. These SOC estimates provide a reproducible example, on country-specific and regional scales, for digital soil mapping across Latin America and contribute to reducing the uncertainty of SOC estimates and improving the parameterization of global models across Latin America. This dataset includes six data files in GeoTIFF (.tif) format at 5 km resolution across Latin America, including: (1) a mosaic of country-specific soil organic carbon estimates, (2) model uncertainty derived for the country-specific estimates, (3) a mosaic of the regional soil organic carbon estimates, (4) model uncertainty derived for the regional estimates, and (5-6) two trend maps of approximate errors associated with the SOC stock calculation method. There is one data file in comma-separated format (.csv) of the point soil characterization data with calculated SOC stock estimates. Four companion files include: a 133-band GeoTiff containing the environmental predictor variables for SOC across Latin America, a .csv file with descriptions of the environmental variables, a shapefile (.shp) of the point soil characterization data with SOC stock estimates and a *.kmz file to display the same.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-03
2024-05-10T14:06:41Z
2024-05-10T14:06:41Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/17694
https://daac.ornl.gov/CMS/guides/Country_SOC_Latin_America.html
https://doi.org/10.3334/ORNLDAAC/1615
url http://hdl.handle.net/20.500.12123/17694
https://daac.ornl.gov/CMS/guides/Country_SOC_Latin_America.html
https://doi.org/10.3334/ORNLDAAC/1615
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ORNL-DAAC
publisher.none.fl_str_mv ORNL-DAAC
dc.source.none.fl_str_mv ORNL-DAAC News : 1-6. (03 july 2019)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341421838761984
score 12.623145