No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America

Autores
Guevara, Mario; Olmedo, Guillermo Federico; Stell, Emma; Yigini, Yusuf; Aguilar Duarte, Yameli; Arellano Hernández, Carlos; Arévalo, Gloria E.; Arroyo-Cruz, Carlos Eduardo; Bolivar, Adriana; Bunning, Sally; Bustamante Cañas, Nelson; Cruz-Gaistardo, Carlos Omar; Davila, Fabian; Dell Acqua, Martín; Encina, Arnulfo; Figueredo Tacona, Hernán; Fontes, Fernando; Hernández Herrera, José Antonio; Ibelles Navarro, Alejandro Roberto; Loayza, Verónica; Manueles, Alexandra; Mendoza Jara, Fernando; Olivera, Carolina; Osorio Hermosilla, Rodrigo; Pereira, Gonzalo; Prieto, Pablo; Ramos, Iván Alexis; Rey Brina, Juan Carlos; Rivera, Rafael; Rodríguez-Rodríguez, Javier; Roopnarine, Ronald; Rosales Ibarra, Albán; Rosales Riveiro, Kenset Amaury; Schulz, Guillermo Andres; Spence, Adrián; Vargas, Ronald R.; Vargas, Rodrigo; Vasques, Gustavo M.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-specific capacities for digital soil mapping (DSM).We identified country-specific predictors for SOC and tested the performance of five predictive algorithms for mapping SOC across Latin America. The algorithms included support vector machines (SVMs), random forest (RF), kernel-weighted nearest neighbors (KK), partial least squares regression (PL), and regression kriging based on stepwise multiple linear models (RK). Country-specific training data and SOC predictors (5 5 km pixel resolution) were obtained from ISRIC – World Soil Information. Temperature, soil type, vegetation indices, and topographic constraints were the best predictors for SOC, but country-specific predictors and their respective weights varied across Latin America. We compared a large diversity of country-specific datasets and models, and were able to explain SOC variability in a range between 1 and 60 %, with no universal predictive algorithm among countries. A regional (nD11 268 SOC estimates) ensemble of these five algorithms was able to explain 39% of SOC variability from repeated 5-fold cross-validation.We report a combined SOC stock of 77.8 43.6 Pg (uncertainty represented by the full conditional response of independent model residuals) across Latin America. SOC stocks were higher in tropical forests (30 16.5 Pg) and croplands (13 8.1 Pg). Country-specific and regional ensembles revealed spatial discrepancies across geopolitical borders, higher elevations, and coastal plains, but provided similar regional stocks (77.8 42.2 and 76.8 45.1 Pg, respectively). These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8 Pg, the Harmonized World Soil Database 138.4 Pg, or the GSOCmap-GSP 99.7 Pg). Countries with large area (i.e., Brazil, Bolivia, Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty in their predictions. We highlight that expert opinion is needed to set boundary prediction limits to avoid unrealistically high modeling estimates. For maximizing explained variance while minimizing prediction bias, the selection of predictive algorithms for SOC mapping should consider density of available data and variability of country-specific environmental gradients. This study highlights the large degree of spatial uncertainty in SOC estimates across Latin America. We provide a framework for improving country-specific mapping efforts and reducing current discrepancy of global, regional, and country-specific SOC estimates.
Fil: Guevara, Mario. Universidad de Delaware. Department of Plant and Soil Sciences; Estados Unidos
Fil: Olmedo, Guillermo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina. FAO; Italia
Fil: Stell; Emma. University of Delaware, Department of Plant and Soil Sciences; Estados Unidos
Fil: Yigini, Yusuf. FAO; Italia
Fil: Aguilar Duarte, Yameli. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; México
Fil: Arellano Hernández, Carlos. Instituto Nacional de Estadísitica y Geografía; México
Fil: Arévalo, Gloria E. Zamorano. University of Honduras and Asociación Hondureña de la Ciencia del Suelo; Honduras
Fil: Arroyo-Cruz, Carlos Eduardo. National Commission for the Knowledge and Use of Biodiversity; México
Fil: Bolivar, Adriana. Instituto Geográfico Agustín Codazzi. Subdirección Agrología; Colombia
Fil: Bunning, Sally. FAO. Oficina Regional para América Latina y el Caribe; Chile
Fil: Bustamante Cañas, Nelson. Servicio Agrícola y Ganadero; Chile
Fil: Cruz-Gaistardo, Carlos Omar. Instituto Nacional de Estadísitica y Geografía; México
Dell Acqua, Martín. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay
Fil: Encina, Arnulfo. Universidad Nacional de Asunción. Facultad de Ciencias Agrarias; Paraguay
Fil: Figueredo Tacona, Hernán. Ministry of Rural Development and Land. Land Viceministry; Bolivia
Fil: Fontes, Fernando. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay
Fil: Hernández Herrera, José Antonio. Universidad Autónoma Agraria Antonio Narro. Unidad Laguna; México
Fil: Ibelles Navarro, Alejandro Roberto. Instituto Nacional de Estadísitica y Geografía; México
Fil: Loayza, Verónica. Ministerio de Agricultura y Ganaderia; Ecuador
Fil: Manueles, Alexandra M.. Zamorano University of Honduras and Asociación Hondureña de la Ciencia del Suelo; Honduras
Fil: Mendoza Jara, Fernando . Universidad Nacional Agraria; Nicaragua
Fil: Olivera, Carolina. FAO. Oficina Regional para América Latina y el Caribe; Colombia
Fil: Osorio Hermosilla, Rodrigo. Servicio Agrícola y Ganadero; Chile
Fil: Pereira, Gonzalo. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay
Fil: Prieto, Pablo. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay
Fil: Ramos, Iván Alexis . Instituto de Investigación Agropecuaria de Panamá; Panamá
Fil: Rey Brina, Juan Carlos. Sociedad Venezolana de la Ciencia del Suelo; Venezuela
Fil: Rivera, Rafael. Ministerio de Medio Ambiente; República Dominicana
Fil: Rodríguez-Rodríguez, Javier. National Commission for the Knowledge and Use of Biodiversity; México
Fil: Roopnarine, Ronald. Department of Natural and Life Sciences. COSTAATT; Trinidad y Tobago
Fil: Rosales Ibarra, Albán. Instituto de Innovación en Transferencia y Tecnología Agropecuaria; Costa Rica
Fil: Rosales Riveiro, Kenset Amaury. Ministerio de Ambiente y Recursos Naturales de Guatemala; Guatemala
Fil: Schulz, Guillermo Andrés. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Spence, Adrián. University of the West Indies. International Centre for Environmental and Nuclear Sciences; Jamaica
Fil: Vasques, Gustavo M. EMBRAPA Solos; Brasil
Fil: Vargas, Ronald R. FAO; Italia
Fil: Vargas, Rodrigo. University of Delaware. Department of Plant and Soil Sciences; Estados Unidos
Fuente
Soil 4 (3) : 173-193 (Agosto 2018)
Materia
Cartografía del Uso de la Tierra
Carbono Orgánico del Suelo
América Latina
Land Use Mapping
Soil Organic Carbon
Latin America
Soil
Suelo
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/4788

id INTADig_63b8d81d98f61e261ddcc98e0b5580ce
oai_identifier_str oai:localhost:20.500.12123/4788
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin AmericaGuevara, MarioOlmedo, Guillermo FedericoStell, EmmaYigini, YusufAguilar Duarte, YameliArellano Hernández, CarlosArévalo, Gloria E.Arroyo-Cruz, Carlos EduardoBolivar, AdrianaBunning, SallyBustamante Cañas, NelsonCruz-Gaistardo, Carlos OmarDavila, FabianDell Acqua, MartínEncina, ArnulfoFigueredo Tacona, HernánFontes, FernandoHernández Herrera, José AntonioIbelles Navarro, Alejandro RobertoLoayza, VerónicaManueles, AlexandraMendoza Jara, FernandoOlivera, CarolinaOsorio Hermosilla, RodrigoPereira, GonzaloPrieto, PabloRamos, Iván AlexisRey Brina, Juan CarlosRivera, RafaelRodríguez-Rodríguez, JavierRoopnarine, RonaldRosales Ibarra, AlbánRosales Riveiro, Kenset AmaurySchulz, Guillermo AndresSpence, AdriánVargas, Ronald R.Vargas, RodrigoVasques, Gustavo M.Cartografía del Uso de la TierraCarbono Orgánico del SueloAmérica LatinaLand Use MappingSoil Organic CarbonLatin AmericaSoilSueloCountry-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-specific capacities for digital soil mapping (DSM).We identified country-specific predictors for SOC and tested the performance of five predictive algorithms for mapping SOC across Latin America. The algorithms included support vector machines (SVMs), random forest (RF), kernel-weighted nearest neighbors (KK), partial least squares regression (PL), and regression kriging based on stepwise multiple linear models (RK). Country-specific training data and SOC predictors (5 5 km pixel resolution) were obtained from ISRIC – World Soil Information. Temperature, soil type, vegetation indices, and topographic constraints were the best predictors for SOC, but country-specific predictors and their respective weights varied across Latin America. We compared a large diversity of country-specific datasets and models, and were able to explain SOC variability in a range between 1 and 60 %, with no universal predictive algorithm among countries. A regional (nD11 268 SOC estimates) ensemble of these five algorithms was able to explain 39% of SOC variability from repeated 5-fold cross-validation.We report a combined SOC stock of 77.8 43.6 Pg (uncertainty represented by the full conditional response of independent model residuals) across Latin America. SOC stocks were higher in tropical forests (30 16.5 Pg) and croplands (13 8.1 Pg). Country-specific and regional ensembles revealed spatial discrepancies across geopolitical borders, higher elevations, and coastal plains, but provided similar regional stocks (77.8 42.2 and 76.8 45.1 Pg, respectively). These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8 Pg, the Harmonized World Soil Database 138.4 Pg, or the GSOCmap-GSP 99.7 Pg). Countries with large area (i.e., Brazil, Bolivia, Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty in their predictions. We highlight that expert opinion is needed to set boundary prediction limits to avoid unrealistically high modeling estimates. For maximizing explained variance while minimizing prediction bias, the selection of predictive algorithms for SOC mapping should consider density of available data and variability of country-specific environmental gradients. This study highlights the large degree of spatial uncertainty in SOC estimates across Latin America. We provide a framework for improving country-specific mapping efforts and reducing current discrepancy of global, regional, and country-specific SOC estimates.Fil: Guevara, Mario. Universidad de Delaware. Department of Plant and Soil Sciences; Estados UnidosFil: Olmedo, Guillermo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina. FAO; ItaliaFil: Stell; Emma. University of Delaware, Department of Plant and Soil Sciences; Estados UnidosFil: Yigini, Yusuf. FAO; ItaliaFil: Aguilar Duarte, Yameli. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; MéxicoFil: Arellano Hernández, Carlos. Instituto Nacional de Estadísitica y Geografía; MéxicoFil: Arévalo, Gloria E. Zamorano. University of Honduras and Asociación Hondureña de la Ciencia del Suelo; HondurasFil: Arroyo-Cruz, Carlos Eduardo. National Commission for the Knowledge and Use of Biodiversity; MéxicoFil: Bolivar, Adriana. Instituto Geográfico Agustín Codazzi. Subdirección Agrología; ColombiaFil: Bunning, Sally. FAO. Oficina Regional para América Latina y el Caribe; ChileFil: Bustamante Cañas, Nelson. Servicio Agrícola y Ganadero; ChileFil: Cruz-Gaistardo, Carlos Omar. Instituto Nacional de Estadísitica y Geografía; MéxicoDell Acqua, Martín. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; UruguayFil: Encina, Arnulfo. Universidad Nacional de Asunción. Facultad de Ciencias Agrarias; ParaguayFil: Figueredo Tacona, Hernán. Ministry of Rural Development and Land. Land Viceministry; BoliviaFil: Fontes, Fernando. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; UruguayFil: Hernández Herrera, José Antonio. Universidad Autónoma Agraria Antonio Narro. Unidad Laguna; MéxicoFil: Ibelles Navarro, Alejandro Roberto. Instituto Nacional de Estadísitica y Geografía; MéxicoFil: Loayza, Verónica. Ministerio de Agricultura y Ganaderia; EcuadorFil: Manueles, Alexandra M.. Zamorano University of Honduras and Asociación Hondureña de la Ciencia del Suelo; HondurasFil: Mendoza Jara, Fernando . Universidad Nacional Agraria; NicaraguaFil: Olivera, Carolina. FAO. Oficina Regional para América Latina y el Caribe; ColombiaFil: Osorio Hermosilla, Rodrigo. Servicio Agrícola y Ganadero; ChileFil: Pereira, Gonzalo. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; UruguayFil: Prieto, Pablo. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; UruguayFil: Ramos, Iván Alexis . Instituto de Investigación Agropecuaria de Panamá; PanamáFil: Rey Brina, Juan Carlos. Sociedad Venezolana de la Ciencia del Suelo; VenezuelaFil: Rivera, Rafael. Ministerio de Medio Ambiente; República DominicanaFil: Rodríguez-Rodríguez, Javier. National Commission for the Knowledge and Use of Biodiversity; MéxicoFil: Roopnarine, Ronald. Department of Natural and Life Sciences. COSTAATT; Trinidad y TobagoFil: Rosales Ibarra, Albán. Instituto de Innovación en Transferencia y Tecnología Agropecuaria; Costa RicaFil: Rosales Riveiro, Kenset Amaury. Ministerio de Ambiente y Recursos Naturales de Guatemala; GuatemalaFil: Schulz, Guillermo Andrés. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Spence, Adrián. University of the West Indies. International Centre for Environmental and Nuclear Sciences; JamaicaFil: Vasques, Gustavo M. EMBRAPA Solos; BrasilFil: Vargas, Ronald R. FAO; ItaliaFil: Vargas, Rodrigo. University of Delaware. Department of Plant and Soil Sciences; Estados Unidos2019-04-01T10:58:05Z2019-04-01T10:58:05Z2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/4788https://www.soil-journal.net/4/173/2018/https://doi.org/10.5194/soil-4-173-2018Soil 4 (3) : 173-193 (Agosto 2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/PNSUELO/1134032/AR./Bases conceptuales y nuevas herramientas para la cartografía de suelos.info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:29:29Zoai:localhost:20.500.12123/4788instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:29:29.59INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
title No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
spellingShingle No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
Guevara, Mario
Cartografía del Uso de la Tierra
Carbono Orgánico del Suelo
América Latina
Land Use Mapping
Soil Organic Carbon
Latin America
Soil
Suelo
title_short No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
title_full No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
title_fullStr No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
title_full_unstemmed No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
title_sort No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
dc.creator.none.fl_str_mv Guevara, Mario
Olmedo, Guillermo Federico
Stell, Emma
Yigini, Yusuf
Aguilar Duarte, Yameli
Arellano Hernández, Carlos
Arévalo, Gloria E.
Arroyo-Cruz, Carlos Eduardo
Bolivar, Adriana
Bunning, Sally
Bustamante Cañas, Nelson
Cruz-Gaistardo, Carlos Omar
Davila, Fabian
Dell Acqua, Martín
Encina, Arnulfo
Figueredo Tacona, Hernán
Fontes, Fernando
Hernández Herrera, José Antonio
Ibelles Navarro, Alejandro Roberto
Loayza, Verónica
Manueles, Alexandra
Mendoza Jara, Fernando
Olivera, Carolina
Osorio Hermosilla, Rodrigo
Pereira, Gonzalo
Prieto, Pablo
Ramos, Iván Alexis
Rey Brina, Juan Carlos
Rivera, Rafael
Rodríguez-Rodríguez, Javier
Roopnarine, Ronald
Rosales Ibarra, Albán
Rosales Riveiro, Kenset Amaury
Schulz, Guillermo Andres
Spence, Adrián
Vargas, Ronald R.
Vargas, Rodrigo
Vasques, Gustavo M.
author Guevara, Mario
author_facet Guevara, Mario
Olmedo, Guillermo Federico
Stell, Emma
Yigini, Yusuf
Aguilar Duarte, Yameli
Arellano Hernández, Carlos
Arévalo, Gloria E.
Arroyo-Cruz, Carlos Eduardo
Bolivar, Adriana
Bunning, Sally
Bustamante Cañas, Nelson
Cruz-Gaistardo, Carlos Omar
Davila, Fabian
Dell Acqua, Martín
Encina, Arnulfo
Figueredo Tacona, Hernán
Fontes, Fernando
Hernández Herrera, José Antonio
Ibelles Navarro, Alejandro Roberto
Loayza, Verónica
Manueles, Alexandra
Mendoza Jara, Fernando
Olivera, Carolina
Osorio Hermosilla, Rodrigo
Pereira, Gonzalo
Prieto, Pablo
Ramos, Iván Alexis
Rey Brina, Juan Carlos
Rivera, Rafael
Rodríguez-Rodríguez, Javier
Roopnarine, Ronald
Rosales Ibarra, Albán
Rosales Riveiro, Kenset Amaury
Schulz, Guillermo Andres
Spence, Adrián
Vargas, Ronald R.
Vargas, Rodrigo
Vasques, Gustavo M.
author_role author
author2 Olmedo, Guillermo Federico
Stell, Emma
Yigini, Yusuf
Aguilar Duarte, Yameli
Arellano Hernández, Carlos
Arévalo, Gloria E.
Arroyo-Cruz, Carlos Eduardo
Bolivar, Adriana
Bunning, Sally
Bustamante Cañas, Nelson
Cruz-Gaistardo, Carlos Omar
Davila, Fabian
Dell Acqua, Martín
Encina, Arnulfo
Figueredo Tacona, Hernán
Fontes, Fernando
Hernández Herrera, José Antonio
Ibelles Navarro, Alejandro Roberto
Loayza, Verónica
Manueles, Alexandra
Mendoza Jara, Fernando
Olivera, Carolina
Osorio Hermosilla, Rodrigo
Pereira, Gonzalo
Prieto, Pablo
Ramos, Iván Alexis
Rey Brina, Juan Carlos
Rivera, Rafael
Rodríguez-Rodríguez, Javier
Roopnarine, Ronald
Rosales Ibarra, Albán
Rosales Riveiro, Kenset Amaury
Schulz, Guillermo Andres
Spence, Adrián
Vargas, Ronald R.
Vargas, Rodrigo
Vasques, Gustavo M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Cartografía del Uso de la Tierra
Carbono Orgánico del Suelo
América Latina
Land Use Mapping
Soil Organic Carbon
Latin America
Soil
Suelo
topic Cartografía del Uso de la Tierra
Carbono Orgánico del Suelo
América Latina
Land Use Mapping
Soil Organic Carbon
Latin America
Soil
Suelo
dc.description.none.fl_txt_mv Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-specific capacities for digital soil mapping (DSM).We identified country-specific predictors for SOC and tested the performance of five predictive algorithms for mapping SOC across Latin America. The algorithms included support vector machines (SVMs), random forest (RF), kernel-weighted nearest neighbors (KK), partial least squares regression (PL), and regression kriging based on stepwise multiple linear models (RK). Country-specific training data and SOC predictors (5 5 km pixel resolution) were obtained from ISRIC – World Soil Information. Temperature, soil type, vegetation indices, and topographic constraints were the best predictors for SOC, but country-specific predictors and their respective weights varied across Latin America. We compared a large diversity of country-specific datasets and models, and were able to explain SOC variability in a range between 1 and 60 %, with no universal predictive algorithm among countries. A regional (nD11 268 SOC estimates) ensemble of these five algorithms was able to explain 39% of SOC variability from repeated 5-fold cross-validation.We report a combined SOC stock of 77.8 43.6 Pg (uncertainty represented by the full conditional response of independent model residuals) across Latin America. SOC stocks were higher in tropical forests (30 16.5 Pg) and croplands (13 8.1 Pg). Country-specific and regional ensembles revealed spatial discrepancies across geopolitical borders, higher elevations, and coastal plains, but provided similar regional stocks (77.8 42.2 and 76.8 45.1 Pg, respectively). These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8 Pg, the Harmonized World Soil Database 138.4 Pg, or the GSOCmap-GSP 99.7 Pg). Countries with large area (i.e., Brazil, Bolivia, Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty in their predictions. We highlight that expert opinion is needed to set boundary prediction limits to avoid unrealistically high modeling estimates. For maximizing explained variance while minimizing prediction bias, the selection of predictive algorithms for SOC mapping should consider density of available data and variability of country-specific environmental gradients. This study highlights the large degree of spatial uncertainty in SOC estimates across Latin America. We provide a framework for improving country-specific mapping efforts and reducing current discrepancy of global, regional, and country-specific SOC estimates.
Fil: Guevara, Mario. Universidad de Delaware. Department of Plant and Soil Sciences; Estados Unidos
Fil: Olmedo, Guillermo Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina. FAO; Italia
Fil: Stell; Emma. University of Delaware, Department of Plant and Soil Sciences; Estados Unidos
Fil: Yigini, Yusuf. FAO; Italia
Fil: Aguilar Duarte, Yameli. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; México
Fil: Arellano Hernández, Carlos. Instituto Nacional de Estadísitica y Geografía; México
Fil: Arévalo, Gloria E. Zamorano. University of Honduras and Asociación Hondureña de la Ciencia del Suelo; Honduras
Fil: Arroyo-Cruz, Carlos Eduardo. National Commission for the Knowledge and Use of Biodiversity; México
Fil: Bolivar, Adriana. Instituto Geográfico Agustín Codazzi. Subdirección Agrología; Colombia
Fil: Bunning, Sally. FAO. Oficina Regional para América Latina y el Caribe; Chile
Fil: Bustamante Cañas, Nelson. Servicio Agrícola y Ganadero; Chile
Fil: Cruz-Gaistardo, Carlos Omar. Instituto Nacional de Estadísitica y Geografía; México
Dell Acqua, Martín. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay
Fil: Encina, Arnulfo. Universidad Nacional de Asunción. Facultad de Ciencias Agrarias; Paraguay
Fil: Figueredo Tacona, Hernán. Ministry of Rural Development and Land. Land Viceministry; Bolivia
Fil: Fontes, Fernando. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay
Fil: Hernández Herrera, José Antonio. Universidad Autónoma Agraria Antonio Narro. Unidad Laguna; México
Fil: Ibelles Navarro, Alejandro Roberto. Instituto Nacional de Estadísitica y Geografía; México
Fil: Loayza, Verónica. Ministerio de Agricultura y Ganaderia; Ecuador
Fil: Manueles, Alexandra M.. Zamorano University of Honduras and Asociación Hondureña de la Ciencia del Suelo; Honduras
Fil: Mendoza Jara, Fernando . Universidad Nacional Agraria; Nicaragua
Fil: Olivera, Carolina. FAO. Oficina Regional para América Latina y el Caribe; Colombia
Fil: Osorio Hermosilla, Rodrigo. Servicio Agrícola y Ganadero; Chile
Fil: Pereira, Gonzalo. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay
Fil: Prieto, Pablo. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay
Fil: Ramos, Iván Alexis . Instituto de Investigación Agropecuaria de Panamá; Panamá
Fil: Rey Brina, Juan Carlos. Sociedad Venezolana de la Ciencia del Suelo; Venezuela
Fil: Rivera, Rafael. Ministerio de Medio Ambiente; República Dominicana
Fil: Rodríguez-Rodríguez, Javier. National Commission for the Knowledge and Use of Biodiversity; México
Fil: Roopnarine, Ronald. Department of Natural and Life Sciences. COSTAATT; Trinidad y Tobago
Fil: Rosales Ibarra, Albán. Instituto de Innovación en Transferencia y Tecnología Agropecuaria; Costa Rica
Fil: Rosales Riveiro, Kenset Amaury. Ministerio de Ambiente y Recursos Naturales de Guatemala; Guatemala
Fil: Schulz, Guillermo Andrés. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Spence, Adrián. University of the West Indies. International Centre for Environmental and Nuclear Sciences; Jamaica
Fil: Vasques, Gustavo M. EMBRAPA Solos; Brasil
Fil: Vargas, Ronald R. FAO; Italia
Fil: Vargas, Rodrigo. University of Delaware. Department of Plant and Soil Sciences; Estados Unidos
description Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-specific capacities for digital soil mapping (DSM).We identified country-specific predictors for SOC and tested the performance of five predictive algorithms for mapping SOC across Latin America. The algorithms included support vector machines (SVMs), random forest (RF), kernel-weighted nearest neighbors (KK), partial least squares regression (PL), and regression kriging based on stepwise multiple linear models (RK). Country-specific training data and SOC predictors (5 5 km pixel resolution) were obtained from ISRIC – World Soil Information. Temperature, soil type, vegetation indices, and topographic constraints were the best predictors for SOC, but country-specific predictors and their respective weights varied across Latin America. We compared a large diversity of country-specific datasets and models, and were able to explain SOC variability in a range between 1 and 60 %, with no universal predictive algorithm among countries. A regional (nD11 268 SOC estimates) ensemble of these five algorithms was able to explain 39% of SOC variability from repeated 5-fold cross-validation.We report a combined SOC stock of 77.8 43.6 Pg (uncertainty represented by the full conditional response of independent model residuals) across Latin America. SOC stocks were higher in tropical forests (30 16.5 Pg) and croplands (13 8.1 Pg). Country-specific and regional ensembles revealed spatial discrepancies across geopolitical borders, higher elevations, and coastal plains, but provided similar regional stocks (77.8 42.2 and 76.8 45.1 Pg, respectively). These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8 Pg, the Harmonized World Soil Database 138.4 Pg, or the GSOCmap-GSP 99.7 Pg). Countries with large area (i.e., Brazil, Bolivia, Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty in their predictions. We highlight that expert opinion is needed to set boundary prediction limits to avoid unrealistically high modeling estimates. For maximizing explained variance while minimizing prediction bias, the selection of predictive algorithms for SOC mapping should consider density of available data and variability of country-specific environmental gradients. This study highlights the large degree of spatial uncertainty in SOC estimates across Latin America. We provide a framework for improving country-specific mapping efforts and reducing current discrepancy of global, regional, and country-specific SOC estimates.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
2019-04-01T10:58:05Z
2019-04-01T10:58:05Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/4788
https://www.soil-journal.net/4/173/2018/
https://doi.org/10.5194/soil-4-173-2018
url http://hdl.handle.net/20.500.12123/4788
https://www.soil-journal.net/4/173/2018/
https://doi.org/10.5194/soil-4-173-2018
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repograntAgreement/INTA/PNSUELO/1134032/AR./Bases conceptuales y nuevas herramientas para la cartografía de suelos.
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Soil 4 (3) : 173-193 (Agosto 2018)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143512642322432
score 12.712165