Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter
- Autores
- Gonzalez Antivilo, Francisco Alberto; Paz, Rosalía Cristina; Echeverria, Mariela; Keller, Markus; Tognetti, Jorge; Borgo, Roberto; Roig Junent, Fidel Alejandro
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Vitis vinifera is mainly cultivated in temperate areas, where seasons are well defined and winter conditions might be severe. To survive under these conditions during the dormant season, grapevines sense environmental parameters to trigger different protective mechanisms that lead to cold hardiness (CH). Crop yield and sustainability will be determined according to the level of CH reached in each organ. Moreover, different cultivars of V. vinifera exhibit different behavior throughout the dormant season, attaining a different status of CH. However, there is scarce information concerning how the same cultivar behaves under contrasting thermal environments. The aim of our research was to unveil how CH varies in trunks of the same cultivar under two contrasting environments and define which are the main thermal and biochemical parameters involved in this process. We submitted 2-year old plants of the same clone of cv. Malbec to two different thermal conditions: natural winter (control) and artificially warm winter (treatment). CH status, thermal and biochemical parameters in trunks were measured periodically over the dormant season, and this experiment was repeated for three years. Our results suggest that grapevine trunks subjected to a different environment reach dissimilar CH status, except at the end of winter. In addition, we determined that daily minimum temperature is the main thermal parameter that drives changes in CH. Also, we found that the total soluble sugars have the greatest relative weight in determining the CH compared with the other compounds evaluated. These results have practical implications in the establishment of vineyards for new growing regions. Moreover, with rising minimum temperature predicted by climate change scenarios, grapevines may be more vulnerable to cold events during the dormant season.
EEA San Juan
Fil: Gonzalez Antivilo, Francisco Alberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Paz, Rosalia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Echeverria, Mariela. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Keller, Markus. Washington State University. Department of Horticulture. Irrigated Agriculture Research and Extension Center; Estados Unidos
Fil: Tognetti, Jorge Alberto. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Laboratorio de Fisiología Vegetal; Argentina
Fil: Borgo, Roberto. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Cátedra de Fisiología Vegetal; Argentina
Fil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina - Fuente
- Agricultural and forest meteorology 262 : 227-236. (15 November 2018)
- Materia
-
Vitis Vinífera
Vid
Invierno
Cambio Climático
Temperatura
Winter
Climate Change
Temperature
Temperature Resistance
Resistencia a la Temperatura - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/3795
Ver los metadatos del registro completo
id |
INTADig_71dcb665b34b63c51f79cc1e80929fde |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/3795 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winterGonzalez Antivilo, Francisco AlbertoPaz, Rosalía CristinaEcheverria, MarielaKeller, MarkusTognetti, JorgeBorgo, RobertoRoig Junent, Fidel AlejandroVitis ViníferaVidInviernoCambio ClimáticoTemperaturaWinterClimate ChangeTemperatureTemperature ResistanceResistencia a la TemperaturaVitis vinifera is mainly cultivated in temperate areas, where seasons are well defined and winter conditions might be severe. To survive under these conditions during the dormant season, grapevines sense environmental parameters to trigger different protective mechanisms that lead to cold hardiness (CH). Crop yield and sustainability will be determined according to the level of CH reached in each organ. Moreover, different cultivars of V. vinifera exhibit different behavior throughout the dormant season, attaining a different status of CH. However, there is scarce information concerning how the same cultivar behaves under contrasting thermal environments. The aim of our research was to unveil how CH varies in trunks of the same cultivar under two contrasting environments and define which are the main thermal and biochemical parameters involved in this process. We submitted 2-year old plants of the same clone of cv. Malbec to two different thermal conditions: natural winter (control) and artificially warm winter (treatment). CH status, thermal and biochemical parameters in trunks were measured periodically over the dormant season, and this experiment was repeated for three years. Our results suggest that grapevine trunks subjected to a different environment reach dissimilar CH status, except at the end of winter. In addition, we determined that daily minimum temperature is the main thermal parameter that drives changes in CH. Also, we found that the total soluble sugars have the greatest relative weight in determining the CH compared with the other compounds evaluated. These results have practical implications in the establishment of vineyards for new growing regions. Moreover, with rising minimum temperature predicted by climate change scenarios, grapevines may be more vulnerable to cold events during the dormant season.EEA San JuanFil: Gonzalez Antivilo, Francisco Alberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Paz, Rosalia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Echeverria, Mariela. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Keller, Markus. Washington State University. Department of Horticulture. Irrigated Agriculture Research and Extension Center; Estados UnidosFil: Tognetti, Jorge Alberto. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Laboratorio de Fisiología Vegetal; ArgentinaFil: Borgo, Roberto. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Cátedra de Fisiología Vegetal; ArgentinaFil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaElsevier2018-11-06T13:24:56Z2018-11-06T13:24:56Z2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/3795https://www.sciencedirect.com/science/article/pii/S0168192318302399?via%3Dihub0168-1923https://doi.org/10.1016/j.agrformet.2018.07.017Agricultural and forest meteorology 262 : 227-236. (15 November 2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-04T09:47:38Zoai:localhost:20.500.12123/3795instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:47:39.789INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter |
title |
Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter |
spellingShingle |
Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter Gonzalez Antivilo, Francisco Alberto Vitis Vinífera Vid Invierno Cambio Climático Temperatura Winter Climate Change Temperature Temperature Resistance Resistencia a la Temperatura |
title_short |
Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter |
title_full |
Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter |
title_fullStr |
Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter |
title_full_unstemmed |
Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter |
title_sort |
Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter |
dc.creator.none.fl_str_mv |
Gonzalez Antivilo, Francisco Alberto Paz, Rosalía Cristina Echeverria, Mariela Keller, Markus Tognetti, Jorge Borgo, Roberto Roig Junent, Fidel Alejandro |
author |
Gonzalez Antivilo, Francisco Alberto |
author_facet |
Gonzalez Antivilo, Francisco Alberto Paz, Rosalía Cristina Echeverria, Mariela Keller, Markus Tognetti, Jorge Borgo, Roberto Roig Junent, Fidel Alejandro |
author_role |
author |
author2 |
Paz, Rosalía Cristina Echeverria, Mariela Keller, Markus Tognetti, Jorge Borgo, Roberto Roig Junent, Fidel Alejandro |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Vitis Vinífera Vid Invierno Cambio Climático Temperatura Winter Climate Change Temperature Temperature Resistance Resistencia a la Temperatura |
topic |
Vitis Vinífera Vid Invierno Cambio Climático Temperatura Winter Climate Change Temperature Temperature Resistance Resistencia a la Temperatura |
dc.description.none.fl_txt_mv |
Vitis vinifera is mainly cultivated in temperate areas, where seasons are well defined and winter conditions might be severe. To survive under these conditions during the dormant season, grapevines sense environmental parameters to trigger different protective mechanisms that lead to cold hardiness (CH). Crop yield and sustainability will be determined according to the level of CH reached in each organ. Moreover, different cultivars of V. vinifera exhibit different behavior throughout the dormant season, attaining a different status of CH. However, there is scarce information concerning how the same cultivar behaves under contrasting thermal environments. The aim of our research was to unveil how CH varies in trunks of the same cultivar under two contrasting environments and define which are the main thermal and biochemical parameters involved in this process. We submitted 2-year old plants of the same clone of cv. Malbec to two different thermal conditions: natural winter (control) and artificially warm winter (treatment). CH status, thermal and biochemical parameters in trunks were measured periodically over the dormant season, and this experiment was repeated for three years. Our results suggest that grapevine trunks subjected to a different environment reach dissimilar CH status, except at the end of winter. In addition, we determined that daily minimum temperature is the main thermal parameter that drives changes in CH. Also, we found that the total soluble sugars have the greatest relative weight in determining the CH compared with the other compounds evaluated. These results have practical implications in the establishment of vineyards for new growing regions. Moreover, with rising minimum temperature predicted by climate change scenarios, grapevines may be more vulnerable to cold events during the dormant season. EEA San Juan Fil: Gonzalez Antivilo, Francisco Alberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina Fil: Paz, Rosalia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina Fil: Echeverria, Mariela. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Keller, Markus. Washington State University. Department of Horticulture. Irrigated Agriculture Research and Extension Center; Estados Unidos Fil: Tognetti, Jorge Alberto. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Laboratorio de Fisiología Vegetal; Argentina Fil: Borgo, Roberto. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Cátedra de Fisiología Vegetal; Argentina Fil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina |
description |
Vitis vinifera is mainly cultivated in temperate areas, where seasons are well defined and winter conditions might be severe. To survive under these conditions during the dormant season, grapevines sense environmental parameters to trigger different protective mechanisms that lead to cold hardiness (CH). Crop yield and sustainability will be determined according to the level of CH reached in each organ. Moreover, different cultivars of V. vinifera exhibit different behavior throughout the dormant season, attaining a different status of CH. However, there is scarce information concerning how the same cultivar behaves under contrasting thermal environments. The aim of our research was to unveil how CH varies in trunks of the same cultivar under two contrasting environments and define which are the main thermal and biochemical parameters involved in this process. We submitted 2-year old plants of the same clone of cv. Malbec to two different thermal conditions: natural winter (control) and artificially warm winter (treatment). CH status, thermal and biochemical parameters in trunks were measured periodically over the dormant season, and this experiment was repeated for three years. Our results suggest that grapevine trunks subjected to a different environment reach dissimilar CH status, except at the end of winter. In addition, we determined that daily minimum temperature is the main thermal parameter that drives changes in CH. Also, we found that the total soluble sugars have the greatest relative weight in determining the CH compared with the other compounds evaluated. These results have practical implications in the establishment of vineyards for new growing regions. Moreover, with rising minimum temperature predicted by climate change scenarios, grapevines may be more vulnerable to cold events during the dormant season. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-06T13:24:56Z 2018-11-06T13:24:56Z 2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/3795 https://www.sciencedirect.com/science/article/pii/S0168192318302399?via%3Dihub 0168-1923 https://doi.org/10.1016/j.agrformet.2018.07.017 |
url |
http://hdl.handle.net/20.500.12123/3795 https://www.sciencedirect.com/science/article/pii/S0168192318302399?via%3Dihub https://doi.org/10.1016/j.agrformet.2018.07.017 |
identifier_str_mv |
0168-1923 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Agricultural and forest meteorology 262 : 227-236. (15 November 2018) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341360288399360 |
score |
12.623145 |