Vegetation type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity

Autores
Peri, Pablo Luis; Gaitan, Juan José; Diaz, Boris Gaston; Almonacid, Leandro; Morales, Cristian Gabriel; Ferrer, Francisco; Lasagno, Romina Gisele; Rodríguez‑Souilla, Julián; Martínez Pastur, Guillermo José
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Vegetation Type (VT) mapping using Optical Earth observation data is essential for the management and conservation of natural resources, as well as for the evaluation of the supply of provisioning ecosystem services (ESs), the maintenance of ecosystem functions, and the conservation of biodiversity in anthropized environments. The main objective of the present work was to determine the spatial patterns of VTs related to climatic, topographic, and spectral variables across Santa Cruz province (Southern Patagonia, Argentina) in order to improve our understanding of land use cover at the regional scale. Also, we examined the spatial relationship between VTs and potential biodiversity (PB), ESs, and soil organic content (SOC) across our study region. We sampled 59,285 sites sorted into 19 major categories of land cover with a reliable discrimination level from field measurements. We selected 31 potential predictive environmental dataset covariates, which represent key factors for the spatial distribution of land cover such as climate (four), topography (three), and spectral (24) factors. All covariate maps were generated or uploaded to the Google Earth Engine cloud-based computing platform for subsequent modeling. A total of 270,292 sampling points were used for validation of the obtained classification map. The main land cover area estimates extracted from the map at the regional level identified about 142,085 km2 of grasslands (representing 58.1% of the total area), 38,355 km2 of Mata Negra Matorral thicket (15.7%), and about 25,189 km2 of bare soil (10.3%). From validation, the Overall Accuracy and the Kappa coefficient values for the classification map were 90.40% and 0.87, respectively. Pure and mixed forests presented the maximum SOC (11.3–11.8 kg m−2), followed by peatlands (10.6 kg m−2) and deciduous Nothofagus forests (10.5 kg m−2). The potential biodiversity was higher in some shrublands (64.1% in Mata Verde shrublands and 63.7% in mixed shrublands) and was comparable to those values found for open deciduous forests (Nothofagus antarctica forest with 60.4%). The provision of ESs presented maximum values at pure evergreen forests (56.7%) and minimum values at some shrubland types (Mata Negra Matorral thicket and mixed shrubland) and steppe grasslands (29.7–30.9%). This study has provided an accurate land cover and VT map that provides crucial information for ecological studies, biodiversity conservation, vegetation management and restoration, and regional strategic decision-making.
EEA Santa Cruz
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral (UNPA); Argentina.
Fil: Gaitan, Juan José. Universidad Nacional de Luján; Argentina.
Fil: Gaitan, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Diaz, Boris Gaston. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Almonacid, Leandro. Municipalidad de Río Gallegos. CONVENIO INTA. Santa Cruz; Argentina.
Fil: Almonacid, Leandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Morales, Cristian Gabriel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Ferrer, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Ferrer, Francisco. Universidad Nacional de la Patagonia Austral (UNPA). Departamento de Recursos Naturales; Argentina.
Fil: Ferrer, Francisco. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Lasagno, Romina Gisele. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Rodríguez‑Souilla, Julián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina.
Fil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina.
Fuente
Sustainability 16 : e2025 (2024)
Materia
Rangelands
Livestock
Carbon
Ecosystem Services
Vegetation
Resource Conservation
Soil Organic Carbon
Forests
Grasslands
Scrublands
Tierras de pastos
Ganado
Biodiversidad
Carbono
Servicios de los Ecosistemas
Vegetación
Conservación de los Recursos
Carbono Orgánico del Suelo
Nothofagus Pumilio
Bosque
Pastizales
Tierras de Matorral
Santa Cruz (Argentina)
Biodiversity
Carbon Balance
Provisioning Ecosystem Services
Ecosystem Functions
Spatial Patterns
Land Use Cover
Steppe Grasslands
Mata Negra Matorral Thicket
Bare Soil
Nothofagus Pumilio Forest
Nothofagus Antarctica Forest
PEBANPA Network
Balance de Carbono
Servicios Ecosistémicos de Provisión
Funciones del Ecosistema
Patrones Espaciales
Cobertura del Uso de la Tierra
Matorral Mata Negra
Suelo Desnudo
Bosques de Nothofagus Pumilio
Bosque de Nothofagus Antarctica
Red PEBANPA
Región Patagónica
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/16897

id INTADig_6fc96bf3ed8c9f337d3f3fbf6284bc64
oai_identifier_str oai:localhost:20.500.12123/16897
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Vegetation type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversityPeri, Pablo LuisGaitan, Juan JoséDiaz, Boris GastonAlmonacid, LeandroMorales, Cristian GabrielFerrer, FranciscoLasagno, Romina GiseleRodríguez‑Souilla, JuliánMartínez Pastur, Guillermo JoséRangelandsLivestockCarbonEcosystem ServicesVegetationResource ConservationSoil Organic CarbonForestsGrasslandsScrublandsTierras de pastosGanadoBiodiversidadCarbonoServicios de los EcosistemasVegetaciónConservación de los RecursosCarbono Orgánico del SueloNothofagus PumilioBosquePastizalesTierras de MatorralSanta Cruz (Argentina)BiodiversityCarbon BalanceProvisioning Ecosystem ServicesEcosystem FunctionsSpatial PatternsLand Use CoverSteppe GrasslandsMata Negra Matorral ThicketBare SoilNothofagus Pumilio ForestNothofagus Antarctica ForestPEBANPA NetworkBalance de CarbonoServicios Ecosistémicos de ProvisiónFunciones del EcosistemaPatrones EspacialesCobertura del Uso de la TierraMatorral Mata NegraSuelo DesnudoBosques de Nothofagus PumilioBosque de Nothofagus AntarcticaRed PEBANPARegión PatagónicaVegetation Type (VT) mapping using Optical Earth observation data is essential for the management and conservation of natural resources, as well as for the evaluation of the supply of provisioning ecosystem services (ESs), the maintenance of ecosystem functions, and the conservation of biodiversity in anthropized environments. The main objective of the present work was to determine the spatial patterns of VTs related to climatic, topographic, and spectral variables across Santa Cruz province (Southern Patagonia, Argentina) in order to improve our understanding of land use cover at the regional scale. Also, we examined the spatial relationship between VTs and potential biodiversity (PB), ESs, and soil organic content (SOC) across our study region. We sampled 59,285 sites sorted into 19 major categories of land cover with a reliable discrimination level from field measurements. We selected 31 potential predictive environmental dataset covariates, which represent key factors for the spatial distribution of land cover such as climate (four), topography (three), and spectral (24) factors. All covariate maps were generated or uploaded to the Google Earth Engine cloud-based computing platform for subsequent modeling. A total of 270,292 sampling points were used for validation of the obtained classification map. The main land cover area estimates extracted from the map at the regional level identified about 142,085 km2 of grasslands (representing 58.1% of the total area), 38,355 km2 of Mata Negra Matorral thicket (15.7%), and about 25,189 km2 of bare soil (10.3%). From validation, the Overall Accuracy and the Kappa coefficient values for the classification map were 90.40% and 0.87, respectively. Pure and mixed forests presented the maximum SOC (11.3–11.8 kg m−2), followed by peatlands (10.6 kg m−2) and deciduous Nothofagus forests (10.5 kg m−2). The potential biodiversity was higher in some shrublands (64.1% in Mata Verde shrublands and 63.7% in mixed shrublands) and was comparable to those values found for open deciduous forests (Nothofagus antarctica forest with 60.4%). The provision of ESs presented maximum values at pure evergreen forests (56.7%) and minimum values at some shrubland types (Mata Negra Matorral thicket and mixed shrubland) and steppe grasslands (29.7–30.9%). This study has provided an accurate land cover and VT map that provides crucial information for ecological studies, biodiversity conservation, vegetation management and restoration, and regional strategic decision-making.EEA Santa CruzFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral (UNPA); Argentina.Fil: Gaitan, Juan José. Universidad Nacional de Luján; Argentina.Fil: Gaitan, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Diaz, Boris Gaston. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Almonacid, Leandro. Municipalidad de Río Gallegos. CONVENIO INTA. Santa Cruz; Argentina.Fil: Almonacid, Leandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Morales, Cristian Gabriel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Ferrer, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Ferrer, Francisco. Universidad Nacional de la Patagonia Austral (UNPA). Departamento de Recursos Naturales; Argentina.Fil: Ferrer, Francisco. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Lasagno, Romina Gisele. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Rodríguez‑Souilla, Julián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina.Fil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina.MDPI2024-03-01T17:15:51Z2024-03-01T17:15:51Z2024-02-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/16897https://www.mdpi.com/2071-1050/16/5/2025Peri P.L.; Gaitán J.; Díaz B.; Almonacid L.; Morales C.; Ferrer F.; Lasagno R.; Rodríguez-Souilla J.; Martínez Pastur G. (2024) Vegetation Type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity. Sustainability 16: e2025. https://doi.org/10.3390/su160520252071-1050https://doi.org/10.3390/su16052025Sustainability 16 : e2025 (2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2019-PD-E2-I038-002, Evaluación, monitoreo y manejo de la biodiversidad en sistemas agropecuarios y forestalesPatagonia .......... (general region) (World, South America, Argentina)7016766info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:46:23Zoai:localhost:20.500.12123/16897instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:46:23.479INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Vegetation type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity
title Vegetation type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity
spellingShingle Vegetation type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity
Peri, Pablo Luis
Rangelands
Livestock
Carbon
Ecosystem Services
Vegetation
Resource Conservation
Soil Organic Carbon
Forests
Grasslands
Scrublands
Tierras de pastos
Ganado
Biodiversidad
Carbono
Servicios de los Ecosistemas
Vegetación
Conservación de los Recursos
Carbono Orgánico del Suelo
Nothofagus Pumilio
Bosque
Pastizales
Tierras de Matorral
Santa Cruz (Argentina)
Biodiversity
Carbon Balance
Provisioning Ecosystem Services
Ecosystem Functions
Spatial Patterns
Land Use Cover
Steppe Grasslands
Mata Negra Matorral Thicket
Bare Soil
Nothofagus Pumilio Forest
Nothofagus Antarctica Forest
PEBANPA Network
Balance de Carbono
Servicios Ecosistémicos de Provisión
Funciones del Ecosistema
Patrones Espaciales
Cobertura del Uso de la Tierra
Matorral Mata Negra
Suelo Desnudo
Bosques de Nothofagus Pumilio
Bosque de Nothofagus Antarctica
Red PEBANPA
Región Patagónica
title_short Vegetation type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity
title_full Vegetation type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity
title_fullStr Vegetation type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity
title_full_unstemmed Vegetation type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity
title_sort Vegetation type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity
dc.creator.none.fl_str_mv Peri, Pablo Luis
Gaitan, Juan José
Diaz, Boris Gaston
Almonacid, Leandro
Morales, Cristian Gabriel
Ferrer, Francisco
Lasagno, Romina Gisele
Rodríguez‑Souilla, Julián
Martínez Pastur, Guillermo José
author Peri, Pablo Luis
author_facet Peri, Pablo Luis
Gaitan, Juan José
Diaz, Boris Gaston
Almonacid, Leandro
Morales, Cristian Gabriel
Ferrer, Francisco
Lasagno, Romina Gisele
Rodríguez‑Souilla, Julián
Martínez Pastur, Guillermo José
author_role author
author2 Gaitan, Juan José
Diaz, Boris Gaston
Almonacid, Leandro
Morales, Cristian Gabriel
Ferrer, Francisco
Lasagno, Romina Gisele
Rodríguez‑Souilla, Julián
Martínez Pastur, Guillermo José
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Rangelands
Livestock
Carbon
Ecosystem Services
Vegetation
Resource Conservation
Soil Organic Carbon
Forests
Grasslands
Scrublands
Tierras de pastos
Ganado
Biodiversidad
Carbono
Servicios de los Ecosistemas
Vegetación
Conservación de los Recursos
Carbono Orgánico del Suelo
Nothofagus Pumilio
Bosque
Pastizales
Tierras de Matorral
Santa Cruz (Argentina)
Biodiversity
Carbon Balance
Provisioning Ecosystem Services
Ecosystem Functions
Spatial Patterns
Land Use Cover
Steppe Grasslands
Mata Negra Matorral Thicket
Bare Soil
Nothofagus Pumilio Forest
Nothofagus Antarctica Forest
PEBANPA Network
Balance de Carbono
Servicios Ecosistémicos de Provisión
Funciones del Ecosistema
Patrones Espaciales
Cobertura del Uso de la Tierra
Matorral Mata Negra
Suelo Desnudo
Bosques de Nothofagus Pumilio
Bosque de Nothofagus Antarctica
Red PEBANPA
Región Patagónica
topic Rangelands
Livestock
Carbon
Ecosystem Services
Vegetation
Resource Conservation
Soil Organic Carbon
Forests
Grasslands
Scrublands
Tierras de pastos
Ganado
Biodiversidad
Carbono
Servicios de los Ecosistemas
Vegetación
Conservación de los Recursos
Carbono Orgánico del Suelo
Nothofagus Pumilio
Bosque
Pastizales
Tierras de Matorral
Santa Cruz (Argentina)
Biodiversity
Carbon Balance
Provisioning Ecosystem Services
Ecosystem Functions
Spatial Patterns
Land Use Cover
Steppe Grasslands
Mata Negra Matorral Thicket
Bare Soil
Nothofagus Pumilio Forest
Nothofagus Antarctica Forest
PEBANPA Network
Balance de Carbono
Servicios Ecosistémicos de Provisión
Funciones del Ecosistema
Patrones Espaciales
Cobertura del Uso de la Tierra
Matorral Mata Negra
Suelo Desnudo
Bosques de Nothofagus Pumilio
Bosque de Nothofagus Antarctica
Red PEBANPA
Región Patagónica
dc.description.none.fl_txt_mv Vegetation Type (VT) mapping using Optical Earth observation data is essential for the management and conservation of natural resources, as well as for the evaluation of the supply of provisioning ecosystem services (ESs), the maintenance of ecosystem functions, and the conservation of biodiversity in anthropized environments. The main objective of the present work was to determine the spatial patterns of VTs related to climatic, topographic, and spectral variables across Santa Cruz province (Southern Patagonia, Argentina) in order to improve our understanding of land use cover at the regional scale. Also, we examined the spatial relationship between VTs and potential biodiversity (PB), ESs, and soil organic content (SOC) across our study region. We sampled 59,285 sites sorted into 19 major categories of land cover with a reliable discrimination level from field measurements. We selected 31 potential predictive environmental dataset covariates, which represent key factors for the spatial distribution of land cover such as climate (four), topography (three), and spectral (24) factors. All covariate maps were generated or uploaded to the Google Earth Engine cloud-based computing platform for subsequent modeling. A total of 270,292 sampling points were used for validation of the obtained classification map. The main land cover area estimates extracted from the map at the regional level identified about 142,085 km2 of grasslands (representing 58.1% of the total area), 38,355 km2 of Mata Negra Matorral thicket (15.7%), and about 25,189 km2 of bare soil (10.3%). From validation, the Overall Accuracy and the Kappa coefficient values for the classification map were 90.40% and 0.87, respectively. Pure and mixed forests presented the maximum SOC (11.3–11.8 kg m−2), followed by peatlands (10.6 kg m−2) and deciduous Nothofagus forests (10.5 kg m−2). The potential biodiversity was higher in some shrublands (64.1% in Mata Verde shrublands and 63.7% in mixed shrublands) and was comparable to those values found for open deciduous forests (Nothofagus antarctica forest with 60.4%). The provision of ESs presented maximum values at pure evergreen forests (56.7%) and minimum values at some shrubland types (Mata Negra Matorral thicket and mixed shrubland) and steppe grasslands (29.7–30.9%). This study has provided an accurate land cover and VT map that provides crucial information for ecological studies, biodiversity conservation, vegetation management and restoration, and regional strategic decision-making.
EEA Santa Cruz
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral (UNPA); Argentina.
Fil: Gaitan, Juan José. Universidad Nacional de Luján; Argentina.
Fil: Gaitan, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Diaz, Boris Gaston. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Almonacid, Leandro. Municipalidad de Río Gallegos. CONVENIO INTA. Santa Cruz; Argentina.
Fil: Almonacid, Leandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Morales, Cristian Gabriel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Ferrer, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Ferrer, Francisco. Universidad Nacional de la Patagonia Austral (UNPA). Departamento de Recursos Naturales; Argentina.
Fil: Ferrer, Francisco. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Lasagno, Romina Gisele. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Rodríguez‑Souilla, Julián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina.
Fil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina.
description Vegetation Type (VT) mapping using Optical Earth observation data is essential for the management and conservation of natural resources, as well as for the evaluation of the supply of provisioning ecosystem services (ESs), the maintenance of ecosystem functions, and the conservation of biodiversity in anthropized environments. The main objective of the present work was to determine the spatial patterns of VTs related to climatic, topographic, and spectral variables across Santa Cruz province (Southern Patagonia, Argentina) in order to improve our understanding of land use cover at the regional scale. Also, we examined the spatial relationship between VTs and potential biodiversity (PB), ESs, and soil organic content (SOC) across our study region. We sampled 59,285 sites sorted into 19 major categories of land cover with a reliable discrimination level from field measurements. We selected 31 potential predictive environmental dataset covariates, which represent key factors for the spatial distribution of land cover such as climate (four), topography (three), and spectral (24) factors. All covariate maps were generated or uploaded to the Google Earth Engine cloud-based computing platform for subsequent modeling. A total of 270,292 sampling points were used for validation of the obtained classification map. The main land cover area estimates extracted from the map at the regional level identified about 142,085 km2 of grasslands (representing 58.1% of the total area), 38,355 km2 of Mata Negra Matorral thicket (15.7%), and about 25,189 km2 of bare soil (10.3%). From validation, the Overall Accuracy and the Kappa coefficient values for the classification map were 90.40% and 0.87, respectively. Pure and mixed forests presented the maximum SOC (11.3–11.8 kg m−2), followed by peatlands (10.6 kg m−2) and deciduous Nothofagus forests (10.5 kg m−2). The potential biodiversity was higher in some shrublands (64.1% in Mata Verde shrublands and 63.7% in mixed shrublands) and was comparable to those values found for open deciduous forests (Nothofagus antarctica forest with 60.4%). The provision of ESs presented maximum values at pure evergreen forests (56.7%) and minimum values at some shrubland types (Mata Negra Matorral thicket and mixed shrubland) and steppe grasslands (29.7–30.9%). This study has provided an accurate land cover and VT map that provides crucial information for ecological studies, biodiversity conservation, vegetation management and restoration, and regional strategic decision-making.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-01T17:15:51Z
2024-03-01T17:15:51Z
2024-02-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/16897
https://www.mdpi.com/2071-1050/16/5/2025
Peri P.L.; Gaitán J.; Díaz B.; Almonacid L.; Morales C.; Ferrer F.; Lasagno R.; Rodríguez-Souilla J.; Martínez Pastur G. (2024) Vegetation Type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity. Sustainability 16: e2025. https://doi.org/10.3390/su16052025
2071-1050
https://doi.org/10.3390/su16052025
url http://hdl.handle.net/20.500.12123/16897
https://www.mdpi.com/2071-1050/16/5/2025
https://doi.org/10.3390/su16052025
identifier_str_mv Peri P.L.; Gaitán J.; Díaz B.; Almonacid L.; Morales C.; Ferrer F.; Lasagno R.; Rodríguez-Souilla J.; Martínez Pastur G. (2024) Vegetation Type mapping in Southern Patagonia and its relationship with ecosystem services, soil carbon stock, and biodiversity. Sustainability 16: e2025. https://doi.org/10.3390/su16052025
2071-1050
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repograntAgreement/INTA/2019-PD-E2-I038-002, Evaluación, monitoreo y manejo de la biodiversidad en sistemas agropecuarios y forestales
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Patagonia .......... (general region) (World, South America, Argentina)
7016766
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv Sustainability 16 : e2025 (2024)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619185222582272
score 12.559606