Prediction of the Ym factor for livestock from on-farm accessible data
- Autores
- Jaurena, Gustavo; Cantet, Juan Manuel; Arroquy, Jose Ignacio; Palladino, Rafael Alejandro; Wawrzkiewicz, Marisa; Colombatto, Darío
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Methane emission factor (Ym) is directly involved to calculate the worldwide livestock methane inventories, hence it is important to refine the estimation of this parameter for different livestock production systems. The purpose of this work was to generate refined mathematical models to predict CH4 emissions from an extensive compilated database at on-farm level and to compare them with different models already available in the literature. Methane emission predictive models (expressed as Ym, % gross energy intake; and methane production, CH4p, g an−1 d−1) where fitted taken into account the production system, the livestock type and the feed characteristics available at on-farm level within a reasonable uncertainty range. In order to develop the models, only easy available parameters were selected to fit new mathematical models. Hence, the full model included: ruminant types (beef cattle, dairy cattle, and sheep), fibre sources (fresh forage, conserved forage, and straw) and concentrate levels (DM basis) in the diet (Low, <35%; Intermediate, 35–65%; High, >65%). Full models were assessed by the Bayesian Information Criterion (BIC) and terms that did not reach significance level (P≤0.05) were dropped from the model. Furthermore, predicted results were assessed through correlation and regression analyses considering the model significance. Models developed in this study were compared by the degree of adjustment of a simple regression. Additive and technique terms were initially dropped from the full model used to predict Ym because they did not have effect in the prediction (P>0.10). Therefore, the final equation for Model 1 was: Ym(a)=Intercept−0.243(±0.051)×DMI (kg d−1)+5.9×10−3(±1.17×10−3)×NDF (g kg−1 DM−1)+5.7×10−3(±1.63×10−3)×DMD (g kg−1 MS−1) (BIC=559). All terms of this model, intercept factor (type of cattle×source of fibre×level of concentrate), DMI, NDF, and DMD were significant (P<0.0001). DMI was the term with the greatest weight in the model. The predicted Ym value decreased about 0.243 percentage units (P<0.0001) per each additional kg in DMI. When the equation was compared with previous publicated models, our model showed a satisfactory degree of fitting. In conclusion, this new model improved the estimation of the Ym factor from beef and dairy production systems, using different forage quality characteristics from on-farm level to increase precision.
EEA Santiago del Estero
Fil: Jaurena, Gustavo. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Cantet, Juan Manuel. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Arroquy, Jose Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero.Facultad de Agronomía y Agroindustrias; Argentina
Fil: Palladino, Rafael Alejandro. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wawrzkiewicz, Marisa. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Colombatto, Dario. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Fuente
- Livestock science 177 : 52-62. (July 2015)
- Materia
-
Ganado
Investigación en la Finca
Metano
Gases de Efecto Invernadero
Livestock
On-Farm Research
Methane
Greenhouse Gases - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/2593
Ver los metadatos del registro completo
id |
INTADig_69275490324dbc5ea79a6ed6c2f402bf |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/2593 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Prediction of the Ym factor for livestock from on-farm accessible dataJaurena, GustavoCantet, Juan ManuelArroquy, Jose IgnacioPalladino, Rafael AlejandroWawrzkiewicz, MarisaColombatto, DaríoGanadoInvestigación en la FincaMetanoGases de Efecto InvernaderoLivestockOn-Farm ResearchMethaneGreenhouse GasesMethane emission factor (Ym) is directly involved to calculate the worldwide livestock methane inventories, hence it is important to refine the estimation of this parameter for different livestock production systems. The purpose of this work was to generate refined mathematical models to predict CH4 emissions from an extensive compilated database at on-farm level and to compare them with different models already available in the literature. Methane emission predictive models (expressed as Ym, % gross energy intake; and methane production, CH4p, g an−1 d−1) where fitted taken into account the production system, the livestock type and the feed characteristics available at on-farm level within a reasonable uncertainty range. In order to develop the models, only easy available parameters were selected to fit new mathematical models. Hence, the full model included: ruminant types (beef cattle, dairy cattle, and sheep), fibre sources (fresh forage, conserved forage, and straw) and concentrate levels (DM basis) in the diet (Low, <35%; Intermediate, 35–65%; High, >65%). Full models were assessed by the Bayesian Information Criterion (BIC) and terms that did not reach significance level (P≤0.05) were dropped from the model. Furthermore, predicted results were assessed through correlation and regression analyses considering the model significance. Models developed in this study were compared by the degree of adjustment of a simple regression. Additive and technique terms were initially dropped from the full model used to predict Ym because they did not have effect in the prediction (P>0.10). Therefore, the final equation for Model 1 was: Ym(a)=Intercept−0.243(±0.051)×DMI (kg d−1)+5.9×10−3(±1.17×10−3)×NDF (g kg−1 DM−1)+5.7×10−3(±1.63×10−3)×DMD (g kg−1 MS−1) (BIC=559). All terms of this model, intercept factor (type of cattle×source of fibre×level of concentrate), DMI, NDF, and DMD were significant (P<0.0001). DMI was the term with the greatest weight in the model. The predicted Ym value decreased about 0.243 percentage units (P<0.0001) per each additional kg in DMI. When the equation was compared with previous publicated models, our model showed a satisfactory degree of fitting. In conclusion, this new model improved the estimation of the Ym factor from beef and dairy production systems, using different forage quality characteristics from on-farm level to increase precision.EEA Santiago del EsteroFil: Jaurena, Gustavo. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Cantet, Juan Manuel. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Arroquy, Jose Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero.Facultad de Agronomía y Agroindustrias; ArgentinaFil: Palladino, Rafael Alejandro. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wawrzkiewicz, Marisa. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Colombatto, Dario. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina2018-06-11T14:41:34Z2018-06-11T14:41:34Z2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.sciencedirect.com/science/article/pii/S1871141315001900http://hdl.handle.net/20.500.12123/25931871-1413https://doi.org/10.1016/j.livsci.2015.04.009Livestock science 177 : 52-62. (July 2015)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:20Zoai:localhost:20.500.12123/2593instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:20.598INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Prediction of the Ym factor for livestock from on-farm accessible data |
title |
Prediction of the Ym factor for livestock from on-farm accessible data |
spellingShingle |
Prediction of the Ym factor for livestock from on-farm accessible data Jaurena, Gustavo Ganado Investigación en la Finca Metano Gases de Efecto Invernadero Livestock On-Farm Research Methane Greenhouse Gases |
title_short |
Prediction of the Ym factor for livestock from on-farm accessible data |
title_full |
Prediction of the Ym factor for livestock from on-farm accessible data |
title_fullStr |
Prediction of the Ym factor for livestock from on-farm accessible data |
title_full_unstemmed |
Prediction of the Ym factor for livestock from on-farm accessible data |
title_sort |
Prediction of the Ym factor for livestock from on-farm accessible data |
dc.creator.none.fl_str_mv |
Jaurena, Gustavo Cantet, Juan Manuel Arroquy, Jose Ignacio Palladino, Rafael Alejandro Wawrzkiewicz, Marisa Colombatto, Darío |
author |
Jaurena, Gustavo |
author_facet |
Jaurena, Gustavo Cantet, Juan Manuel Arroquy, Jose Ignacio Palladino, Rafael Alejandro Wawrzkiewicz, Marisa Colombatto, Darío |
author_role |
author |
author2 |
Cantet, Juan Manuel Arroquy, Jose Ignacio Palladino, Rafael Alejandro Wawrzkiewicz, Marisa Colombatto, Darío |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ganado Investigación en la Finca Metano Gases de Efecto Invernadero Livestock On-Farm Research Methane Greenhouse Gases |
topic |
Ganado Investigación en la Finca Metano Gases de Efecto Invernadero Livestock On-Farm Research Methane Greenhouse Gases |
dc.description.none.fl_txt_mv |
Methane emission factor (Ym) is directly involved to calculate the worldwide livestock methane inventories, hence it is important to refine the estimation of this parameter for different livestock production systems. The purpose of this work was to generate refined mathematical models to predict CH4 emissions from an extensive compilated database at on-farm level and to compare them with different models already available in the literature. Methane emission predictive models (expressed as Ym, % gross energy intake; and methane production, CH4p, g an−1 d−1) where fitted taken into account the production system, the livestock type and the feed characteristics available at on-farm level within a reasonable uncertainty range. In order to develop the models, only easy available parameters were selected to fit new mathematical models. Hence, the full model included: ruminant types (beef cattle, dairy cattle, and sheep), fibre sources (fresh forage, conserved forage, and straw) and concentrate levels (DM basis) in the diet (Low, <35%; Intermediate, 35–65%; High, >65%). Full models were assessed by the Bayesian Information Criterion (BIC) and terms that did not reach significance level (P≤0.05) were dropped from the model. Furthermore, predicted results were assessed through correlation and regression analyses considering the model significance. Models developed in this study were compared by the degree of adjustment of a simple regression. Additive and technique terms were initially dropped from the full model used to predict Ym because they did not have effect in the prediction (P>0.10). Therefore, the final equation for Model 1 was: Ym(a)=Intercept−0.243(±0.051)×DMI (kg d−1)+5.9×10−3(±1.17×10−3)×NDF (g kg−1 DM−1)+5.7×10−3(±1.63×10−3)×DMD (g kg−1 MS−1) (BIC=559). All terms of this model, intercept factor (type of cattle×source of fibre×level of concentrate), DMI, NDF, and DMD were significant (P<0.0001). DMI was the term with the greatest weight in the model. The predicted Ym value decreased about 0.243 percentage units (P<0.0001) per each additional kg in DMI. When the equation was compared with previous publicated models, our model showed a satisfactory degree of fitting. In conclusion, this new model improved the estimation of the Ym factor from beef and dairy production systems, using different forage quality characteristics from on-farm level to increase precision. EEA Santiago del Estero Fil: Jaurena, Gustavo. Universidad de Buenos Aires. Facultad de Agronomía; Argentina Fil: Cantet, Juan Manuel. Universidad de Buenos Aires. Facultad de Agronomía; Argentina Fil: Arroquy, Jose Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero.Facultad de Agronomía y Agroindustrias; Argentina Fil: Palladino, Rafael Alejandro. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Wawrzkiewicz, Marisa. Universidad de Buenos Aires. Facultad de Agronomía; Argentina Fil: Colombatto, Dario. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Methane emission factor (Ym) is directly involved to calculate the worldwide livestock methane inventories, hence it is important to refine the estimation of this parameter for different livestock production systems. The purpose of this work was to generate refined mathematical models to predict CH4 emissions from an extensive compilated database at on-farm level and to compare them with different models already available in the literature. Methane emission predictive models (expressed as Ym, % gross energy intake; and methane production, CH4p, g an−1 d−1) where fitted taken into account the production system, the livestock type and the feed characteristics available at on-farm level within a reasonable uncertainty range. In order to develop the models, only easy available parameters were selected to fit new mathematical models. Hence, the full model included: ruminant types (beef cattle, dairy cattle, and sheep), fibre sources (fresh forage, conserved forage, and straw) and concentrate levels (DM basis) in the diet (Low, <35%; Intermediate, 35–65%; High, >65%). Full models were assessed by the Bayesian Information Criterion (BIC) and terms that did not reach significance level (P≤0.05) were dropped from the model. Furthermore, predicted results were assessed through correlation and regression analyses considering the model significance. Models developed in this study were compared by the degree of adjustment of a simple regression. Additive and technique terms were initially dropped from the full model used to predict Ym because they did not have effect in the prediction (P>0.10). Therefore, the final equation for Model 1 was: Ym(a)=Intercept−0.243(±0.051)×DMI (kg d−1)+5.9×10−3(±1.17×10−3)×NDF (g kg−1 DM−1)+5.7×10−3(±1.63×10−3)×DMD (g kg−1 MS−1) (BIC=559). All terms of this model, intercept factor (type of cattle×source of fibre×level of concentrate), DMI, NDF, and DMD were significant (P<0.0001). DMI was the term with the greatest weight in the model. The predicted Ym value decreased about 0.243 percentage units (P<0.0001) per each additional kg in DMI. When the equation was compared with previous publicated models, our model showed a satisfactory degree of fitting. In conclusion, this new model improved the estimation of the Ym factor from beef and dairy production systems, using different forage quality characteristics from on-farm level to increase precision. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 2018-06-11T14:41:34Z 2018-06-11T14:41:34Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1871141315001900 http://hdl.handle.net/20.500.12123/2593 1871-1413 https://doi.org/10.1016/j.livsci.2015.04.009 |
url |
https://www.sciencedirect.com/science/article/pii/S1871141315001900 http://hdl.handle.net/20.500.12123/2593 https://doi.org/10.1016/j.livsci.2015.04.009 |
identifier_str_mv |
1871-1413 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Livestock science 177 : 52-62. (July 2015) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619122981208064 |
score |
12.559606 |