Prediction of the Ym factor for livestock from on-farm accessible data

Autores
Jaurena, Gustavo; Cantet, Juan Manuel; Arroquy, Jose Ignacio; Palladino, Rafael Alejandro; Wawrzkiewicz, Marisa; Colombatto, Darío
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Methane emission factor (Ym) is directly involved to calculate the worldwide livestock methane inventories, hence it is important to refine the estimation of this parameter for different livestock production systems. The purpose of this work was to generate refined mathematical models to predict CH4 emissions from an extensive compilated database at on-farm level and to compare them with different models already available in the literature. Methane emission predictive models (expressed as Ym, % gross energy intake; and methane production, CH4p, g an−1 d−1) where fitted taken into account the production system, the livestock type and the feed characteristics available at on-farm level within a reasonable uncertainty range. In order to develop the models, only easy available parameters were selected to fit new mathematical models. Hence, the full model included: ruminant types (beef cattle, dairy cattle, and sheep), fibre sources (fresh forage, conserved forage, and straw) and concentrate levels (DM basis) in the diet (Low, <35%; Intermediate, 35–65%; High, >65%). Full models were assessed by the Bayesian Information Criterion (BIC) and terms that did not reach significance level (P≤0.05) were dropped from the model. Furthermore, predicted results were assessed through correlation and regression analyses considering the model significance. Models developed in this study were compared by the degree of adjustment of a simple regression. Additive and technique terms were initially dropped from the full model used to predict Ym because they did not have effect in the prediction (P>0.10). Therefore, the final equation for Model 1 was: Ym(a)=Intercept−0.243(±0.051)×DMI (kg d−1)+5.9×10−3(±1.17×10−3)×NDF (g kg−1 DM−1)+5.7×10−3(±1.63×10−3)×DMD (g kg−1 MS−1) (BIC=559). All terms of this model, intercept factor (type of cattle×source of fibre×level of concentrate), DMI, NDF, and DMD were significant (P<0.0001). DMI was the term with the greatest weight in the model. The predicted Ym value decreased about 0.243 percentage units (P<0.0001) per each additional kg in DMI. When the equation was compared with previous publicated models, our model showed a satisfactory degree of fitting. In conclusion, this new model improved the estimation of the Ym factor from beef and dairy production systems, using different forage quality characteristics from on-farm level to increase precision.
EEA Santiago del Estero
Fil: Jaurena, Gustavo. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Cantet, Juan Manuel. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Arroquy, Jose Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero.Facultad de Agronomía y Agroindustrias; Argentina
Fil: Palladino, Rafael Alejandro. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wawrzkiewicz, Marisa. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Colombatto, Dario. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fuente
Livestock science 177 : 52-62. (July 2015)
Materia
Ganado
Investigación en la Finca
Metano
Gases de Efecto Invernadero
Livestock
On-Farm Research
Methane
Greenhouse Gases
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/2593

id INTADig_69275490324dbc5ea79a6ed6c2f402bf
oai_identifier_str oai:localhost:20.500.12123/2593
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Prediction of the Ym factor for livestock from on-farm accessible dataJaurena, GustavoCantet, Juan ManuelArroquy, Jose IgnacioPalladino, Rafael AlejandroWawrzkiewicz, MarisaColombatto, DaríoGanadoInvestigación en la FincaMetanoGases de Efecto InvernaderoLivestockOn-Farm ResearchMethaneGreenhouse GasesMethane emission factor (Ym) is directly involved to calculate the worldwide livestock methane inventories, hence it is important to refine the estimation of this parameter for different livestock production systems. The purpose of this work was to generate refined mathematical models to predict CH4 emissions from an extensive compilated database at on-farm level and to compare them with different models already available in the literature. Methane emission predictive models (expressed as Ym, % gross energy intake; and methane production, CH4p, g an−1 d−1) where fitted taken into account the production system, the livestock type and the feed characteristics available at on-farm level within a reasonable uncertainty range. In order to develop the models, only easy available parameters were selected to fit new mathematical models. Hence, the full model included: ruminant types (beef cattle, dairy cattle, and sheep), fibre sources (fresh forage, conserved forage, and straw) and concentrate levels (DM basis) in the diet (Low, <35%; Intermediate, 35–65%; High, >65%). Full models were assessed by the Bayesian Information Criterion (BIC) and terms that did not reach significance level (P≤0.05) were dropped from the model. Furthermore, predicted results were assessed through correlation and regression analyses considering the model significance. Models developed in this study were compared by the degree of adjustment of a simple regression. Additive and technique terms were initially dropped from the full model used to predict Ym because they did not have effect in the prediction (P>0.10). Therefore, the final equation for Model 1 was: Ym(a)=Intercept−0.243(±0.051)×DMI (kg d−1)+5.9×10−3(±1.17×10−3)×NDF (g kg−1 DM−1)+5.7×10−3(±1.63×10−3)×DMD (g kg−1 MS−1) (BIC=559). All terms of this model, intercept factor (type of cattle×source of fibre×level of concentrate), DMI, NDF, and DMD were significant (P<0.0001). DMI was the term with the greatest weight in the model. The predicted Ym value decreased about 0.243 percentage units (P<0.0001) per each additional kg in DMI. When the equation was compared with previous publicated models, our model showed a satisfactory degree of fitting. In conclusion, this new model improved the estimation of the Ym factor from beef and dairy production systems, using different forage quality characteristics from on-farm level to increase precision.EEA Santiago del EsteroFil: Jaurena, Gustavo. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Cantet, Juan Manuel. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Arroquy, Jose Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero.Facultad de Agronomía y Agroindustrias; ArgentinaFil: Palladino, Rafael Alejandro. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wawrzkiewicz, Marisa. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Colombatto, Dario. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina2018-06-11T14:41:34Z2018-06-11T14:41:34Z2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.sciencedirect.com/science/article/pii/S1871141315001900http://hdl.handle.net/20.500.12123/25931871-1413https://doi.org/10.1016/j.livsci.2015.04.009Livestock science 177 : 52-62. (July 2015)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:20Zoai:localhost:20.500.12123/2593instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:20.598INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Prediction of the Ym factor for livestock from on-farm accessible data
title Prediction of the Ym factor for livestock from on-farm accessible data
spellingShingle Prediction of the Ym factor for livestock from on-farm accessible data
Jaurena, Gustavo
Ganado
Investigación en la Finca
Metano
Gases de Efecto Invernadero
Livestock
On-Farm Research
Methane
Greenhouse Gases
title_short Prediction of the Ym factor for livestock from on-farm accessible data
title_full Prediction of the Ym factor for livestock from on-farm accessible data
title_fullStr Prediction of the Ym factor for livestock from on-farm accessible data
title_full_unstemmed Prediction of the Ym factor for livestock from on-farm accessible data
title_sort Prediction of the Ym factor for livestock from on-farm accessible data
dc.creator.none.fl_str_mv Jaurena, Gustavo
Cantet, Juan Manuel
Arroquy, Jose Ignacio
Palladino, Rafael Alejandro
Wawrzkiewicz, Marisa
Colombatto, Darío
author Jaurena, Gustavo
author_facet Jaurena, Gustavo
Cantet, Juan Manuel
Arroquy, Jose Ignacio
Palladino, Rafael Alejandro
Wawrzkiewicz, Marisa
Colombatto, Darío
author_role author
author2 Cantet, Juan Manuel
Arroquy, Jose Ignacio
Palladino, Rafael Alejandro
Wawrzkiewicz, Marisa
Colombatto, Darío
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ganado
Investigación en la Finca
Metano
Gases de Efecto Invernadero
Livestock
On-Farm Research
Methane
Greenhouse Gases
topic Ganado
Investigación en la Finca
Metano
Gases de Efecto Invernadero
Livestock
On-Farm Research
Methane
Greenhouse Gases
dc.description.none.fl_txt_mv Methane emission factor (Ym) is directly involved to calculate the worldwide livestock methane inventories, hence it is important to refine the estimation of this parameter for different livestock production systems. The purpose of this work was to generate refined mathematical models to predict CH4 emissions from an extensive compilated database at on-farm level and to compare them with different models already available in the literature. Methane emission predictive models (expressed as Ym, % gross energy intake; and methane production, CH4p, g an−1 d−1) where fitted taken into account the production system, the livestock type and the feed characteristics available at on-farm level within a reasonable uncertainty range. In order to develop the models, only easy available parameters were selected to fit new mathematical models. Hence, the full model included: ruminant types (beef cattle, dairy cattle, and sheep), fibre sources (fresh forage, conserved forage, and straw) and concentrate levels (DM basis) in the diet (Low, <35%; Intermediate, 35–65%; High, >65%). Full models were assessed by the Bayesian Information Criterion (BIC) and terms that did not reach significance level (P≤0.05) were dropped from the model. Furthermore, predicted results were assessed through correlation and regression analyses considering the model significance. Models developed in this study were compared by the degree of adjustment of a simple regression. Additive and technique terms were initially dropped from the full model used to predict Ym because they did not have effect in the prediction (P>0.10). Therefore, the final equation for Model 1 was: Ym(a)=Intercept−0.243(±0.051)×DMI (kg d−1)+5.9×10−3(±1.17×10−3)×NDF (g kg−1 DM−1)+5.7×10−3(±1.63×10−3)×DMD (g kg−1 MS−1) (BIC=559). All terms of this model, intercept factor (type of cattle×source of fibre×level of concentrate), DMI, NDF, and DMD were significant (P<0.0001). DMI was the term with the greatest weight in the model. The predicted Ym value decreased about 0.243 percentage units (P<0.0001) per each additional kg in DMI. When the equation was compared with previous publicated models, our model showed a satisfactory degree of fitting. In conclusion, this new model improved the estimation of the Ym factor from beef and dairy production systems, using different forage quality characteristics from on-farm level to increase precision.
EEA Santiago del Estero
Fil: Jaurena, Gustavo. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Cantet, Juan Manuel. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Arroquy, Jose Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero.Facultad de Agronomía y Agroindustrias; Argentina
Fil: Palladino, Rafael Alejandro. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wawrzkiewicz, Marisa. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Colombatto, Dario. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Methane emission factor (Ym) is directly involved to calculate the worldwide livestock methane inventories, hence it is important to refine the estimation of this parameter for different livestock production systems. The purpose of this work was to generate refined mathematical models to predict CH4 emissions from an extensive compilated database at on-farm level and to compare them with different models already available in the literature. Methane emission predictive models (expressed as Ym, % gross energy intake; and methane production, CH4p, g an−1 d−1) where fitted taken into account the production system, the livestock type and the feed characteristics available at on-farm level within a reasonable uncertainty range. In order to develop the models, only easy available parameters were selected to fit new mathematical models. Hence, the full model included: ruminant types (beef cattle, dairy cattle, and sheep), fibre sources (fresh forage, conserved forage, and straw) and concentrate levels (DM basis) in the diet (Low, <35%; Intermediate, 35–65%; High, >65%). Full models were assessed by the Bayesian Information Criterion (BIC) and terms that did not reach significance level (P≤0.05) were dropped from the model. Furthermore, predicted results were assessed through correlation and regression analyses considering the model significance. Models developed in this study were compared by the degree of adjustment of a simple regression. Additive and technique terms were initially dropped from the full model used to predict Ym because they did not have effect in the prediction (P>0.10). Therefore, the final equation for Model 1 was: Ym(a)=Intercept−0.243(±0.051)×DMI (kg d−1)+5.9×10−3(±1.17×10−3)×NDF (g kg−1 DM−1)+5.7×10−3(±1.63×10−3)×DMD (g kg−1 MS−1) (BIC=559). All terms of this model, intercept factor (type of cattle×source of fibre×level of concentrate), DMI, NDF, and DMD were significant (P<0.0001). DMI was the term with the greatest weight in the model. The predicted Ym value decreased about 0.243 percentage units (P<0.0001) per each additional kg in DMI. When the equation was compared with previous publicated models, our model showed a satisfactory degree of fitting. In conclusion, this new model improved the estimation of the Ym factor from beef and dairy production systems, using different forage quality characteristics from on-farm level to increase precision.
publishDate 2015
dc.date.none.fl_str_mv 2015-07
2018-06-11T14:41:34Z
2018-06-11T14:41:34Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1871141315001900
http://hdl.handle.net/20.500.12123/2593
1871-1413
https://doi.org/10.1016/j.livsci.2015.04.009
url https://www.sciencedirect.com/science/article/pii/S1871141315001900
http://hdl.handle.net/20.500.12123/2593
https://doi.org/10.1016/j.livsci.2015.04.009
identifier_str_mv 1871-1413
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Livestock science 177 : 52-62. (July 2015)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619122981208064
score 12.559606