Convergence of soil nitrogen isotopes across global climate gradients

Autores
Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixing; Augusto, Laurent; Baisden, Troy; Brookshire, E.N.J.; Cramer, Michael D.; Hasselquist, Niles; Hobbie, Erik A.; Kahmen, Ansgar; Kaba, Keisuke; Kranabetter, M.; Mack, M.; Marin-Spiotta, E.; Mayor, J.R.; McLauchlan, K.K.; Michelsen, A.; Nardoto, G.B.; Oliveira, R.S.; Perakis, S.S.; Peri, Pablo Luis; Quesada, C.; Richter, A.; Schipper, L.A.; Stevenson, B.A.; Turner, B.L.; Viani, R.A.G.; Wanek, W.; Zeller, B.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Fil: Craine, Joseph M. Kansas State University. Division of Biology; Estados Unidos
Fil: Elmore, Andrew J. University of Maryland Center for Environmental Science. Appalachian Laboratory; Estados Unidos
Fil: Wang, Lixing. Indiana University-Purdue University Department of Earth Sciences; Estados Unidos
Fil: Augusto, Laurent. INRA. Bordeaux Sciences Agro; Francia
Fil: Baisden, Troy. GNS Science. National Isotope Centre; Nueva Zelanda
Fil: Brookshire, E.N.J. Montana State University. Department of Land Resources and Environmental Sciences; Estados Unidos
Fil: Cramer, Michael D. University of Cape Town. Department of Biological Sciences; Sudáfrica
Fil: Hasselquist, Niles. Swedish University of Agricultural Sciences. Forest Ecology and Management; Suecia
Fil: Hobbie, Erik A. University of New Hampshire. Earth Systems Research Center; Estados Unidos
Fil: Kahmen, Ansgar. Departement of Environmental Sciences - Botany; Suiza
Fil: Kaba, Keisuke. Tokyo University of Agriculture and Technology. Institute of Agriculture; Japón
Fil: Kranabetter, M. British Columbia (Canadá). Ministry of Forests, Lands and Natural Resource Operations; Canadá
Fil: Mack, M. University of Florida. Department of Biology; Estados Unidos
Fil: Marin-Spiotta, E. University of Wisconsin. Department of Geography; Estados Unidos
Fil: Mayor, J.R. Swedish University of Agricultural Sciences. Department of Forest Ecology & Management; Suecia
Fil: McLauchlan, K.K. Kansas State University. Department of Geography; Estados Unidos
Fil: Michelsen, A. University of Copenhagen. Department of Biology; Dinamarca
Fil: Nardoto, G.B. Universidade de Brasília. Faculdade UnB Planaltina; Brasil
Fil: Oliveira, R.S. Universidade Estadual de Campinas. Instituto de Biologia. Departamento de Biologia Vegetal; Brasil
Fil: Perakis, S.S. Forest and Rangeland Ecosystem Science Center; Estados Unidos
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Universidad Nacional de la Patagonia Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Quesada, C. Instituto Nacional de Pesquisas da Amazonia. Coordenação de Dinâmica Ambiental; Brasil
Fil: Richter, A. University of Vienna. Department of Terrestrial Ecosystem Research; Austria
Fil: Schipper, L.A. University of Waikato. Environmental Research Institute; Nueva Zelanda
Fil: Stevenson, B.A. Landcare Research; Nueva Zelanda
Fil: Turner, B.L. Smithsonian Tropical Research Institute; Panamá
Fil: Viani, R.A.G. Universidade Federal de São Carlos. Centro de Ciências Agrárias; Brasil
Fil: Wanek, W. University of Vienna. Department of Terrestrial Ecosystem Research; Austria
Fil: Zeller, B. INRA Nancy. Biogéochimie des Ecosystèmes Forestiers; Francia
Fuente
Scientific reports 5 (8280) : 1-8. (2015)
Materia
Suelo
Soil
Climatic Factors
Nitrogen
Isotopes
Carbon
Factores Climáticos
Nitrógeno
Isótopos
Carbono
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/1132

id INTADig_64234a09417d6946a7859c3378d6e8a0
oai_identifier_str oai:localhost:20.500.12123/1132
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Convergence of soil nitrogen isotopes across global climate gradientsCraine, Joseph M.Elmore, Andrew J.Wang, LixingAugusto, LaurentBaisden, TroyBrookshire, E.N.J.Cramer, Michael D.Hasselquist, NilesHobbie, Erik A.Kahmen, AnsgarKaba, KeisukeKranabetter, M.Mack, M.Marin-Spiotta, E.Mayor, J.R.McLauchlan, K.K.Michelsen, A.Nardoto, G.B.Oliveira, R.S.Perakis, S.S.Peri, Pablo LuisQuesada, C.Richter, A.Schipper, L.A.Stevenson, B.A.Turner, B.L.Viani, R.A.G.Wanek, W.Zeller, B.SueloSoilClimatic FactorsNitrogenIsotopesCarbonFactores ClimáticosNitrógenoIsótoposCarbonoQuantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.Fil: Craine, Joseph M. Kansas State University. Division of Biology; Estados UnidosFil: Elmore, Andrew J. University of Maryland Center for Environmental Science. Appalachian Laboratory; Estados UnidosFil: Wang, Lixing. Indiana University-Purdue University Department of Earth Sciences; Estados UnidosFil: Augusto, Laurent. INRA. Bordeaux Sciences Agro; FranciaFil: Baisden, Troy. GNS Science. National Isotope Centre; Nueva ZelandaFil: Brookshire, E.N.J. Montana State University. Department of Land Resources and Environmental Sciences; Estados UnidosFil: Cramer, Michael D. University of Cape Town. Department of Biological Sciences; SudáfricaFil: Hasselquist, Niles. Swedish University of Agricultural Sciences. Forest Ecology and Management; SueciaFil: Hobbie, Erik A. University of New Hampshire. Earth Systems Research Center; Estados UnidosFil: Kahmen, Ansgar. Departement of Environmental Sciences - Botany; SuizaFil: Kaba, Keisuke. Tokyo University of Agriculture and Technology. Institute of Agriculture; JapónFil: Kranabetter, M. British Columbia (Canadá). Ministry of Forests, Lands and Natural Resource Operations; CanadáFil: Mack, M. University of Florida. Department of Biology; Estados UnidosFil: Marin-Spiotta, E. University of Wisconsin. Department of Geography; Estados UnidosFil: Mayor, J.R. Swedish University of Agricultural Sciences. Department of Forest Ecology & Management; SueciaFil: McLauchlan, K.K. Kansas State University. Department of Geography; Estados UnidosFil: Michelsen, A. University of Copenhagen. Department of Biology; DinamarcaFil: Nardoto, G.B. Universidade de Brasília. Faculdade UnB Planaltina; BrasilFil: Oliveira, R.S. Universidade Estadual de Campinas. Instituto de Biologia. Departamento de Biologia Vegetal; BrasilFil: Perakis, S.S. Forest and Rangeland Ecosystem Science Center; Estados UnidosFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Universidad Nacional de la Patagonia Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Quesada, C. Instituto Nacional de Pesquisas da Amazonia. Coordenação de Dinâmica Ambiental; BrasilFil: Richter, A. University of Vienna. Department of Terrestrial Ecosystem Research; AustriaFil: Schipper, L.A. University of Waikato. Environmental Research Institute; Nueva ZelandaFil: Stevenson, B.A. Landcare Research; Nueva ZelandaFil: Turner, B.L. Smithsonian Tropical Research Institute; PanamáFil: Viani, R.A.G. Universidade Federal de São Carlos. Centro de Ciências Agrárias; BrasilFil: Wanek, W. University of Vienna. Department of Terrestrial Ecosystem Research; AustriaFil: Zeller, B. INRA Nancy. Biogéochimie des Ecosystèmes Forestiers; Francia2017-09-05T14:51:04Z2017-09-05T14:51:04Z2015-02-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/1132https://www.nature.com/articles/srep082802045-2322https://doi.org/10.1038/srep08280Scientific reports 5 (8280) : 1-8. (2015)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:46:58Zoai:localhost:20.500.12123/1132instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:47:00.138INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Convergence of soil nitrogen isotopes across global climate gradients
title Convergence of soil nitrogen isotopes across global climate gradients
spellingShingle Convergence of soil nitrogen isotopes across global climate gradients
Craine, Joseph M.
Suelo
Soil
Climatic Factors
Nitrogen
Isotopes
Carbon
Factores Climáticos
Nitrógeno
Isótopos
Carbono
title_short Convergence of soil nitrogen isotopes across global climate gradients
title_full Convergence of soil nitrogen isotopes across global climate gradients
title_fullStr Convergence of soil nitrogen isotopes across global climate gradients
title_full_unstemmed Convergence of soil nitrogen isotopes across global climate gradients
title_sort Convergence of soil nitrogen isotopes across global climate gradients
dc.creator.none.fl_str_mv Craine, Joseph M.
Elmore, Andrew J.
Wang, Lixing
Augusto, Laurent
Baisden, Troy
Brookshire, E.N.J.
Cramer, Michael D.
Hasselquist, Niles
Hobbie, Erik A.
Kahmen, Ansgar
Kaba, Keisuke
Kranabetter, M.
Mack, M.
Marin-Spiotta, E.
Mayor, J.R.
McLauchlan, K.K.
Michelsen, A.
Nardoto, G.B.
Oliveira, R.S.
Perakis, S.S.
Peri, Pablo Luis
Quesada, C.
Richter, A.
Schipper, L.A.
Stevenson, B.A.
Turner, B.L.
Viani, R.A.G.
Wanek, W.
Zeller, B.
author Craine, Joseph M.
author_facet Craine, Joseph M.
Elmore, Andrew J.
Wang, Lixing
Augusto, Laurent
Baisden, Troy
Brookshire, E.N.J.
Cramer, Michael D.
Hasselquist, Niles
Hobbie, Erik A.
Kahmen, Ansgar
Kaba, Keisuke
Kranabetter, M.
Mack, M.
Marin-Spiotta, E.
Mayor, J.R.
McLauchlan, K.K.
Michelsen, A.
Nardoto, G.B.
Oliveira, R.S.
Perakis, S.S.
Peri, Pablo Luis
Quesada, C.
Richter, A.
Schipper, L.A.
Stevenson, B.A.
Turner, B.L.
Viani, R.A.G.
Wanek, W.
Zeller, B.
author_role author
author2 Elmore, Andrew J.
Wang, Lixing
Augusto, Laurent
Baisden, Troy
Brookshire, E.N.J.
Cramer, Michael D.
Hasselquist, Niles
Hobbie, Erik A.
Kahmen, Ansgar
Kaba, Keisuke
Kranabetter, M.
Mack, M.
Marin-Spiotta, E.
Mayor, J.R.
McLauchlan, K.K.
Michelsen, A.
Nardoto, G.B.
Oliveira, R.S.
Perakis, S.S.
Peri, Pablo Luis
Quesada, C.
Richter, A.
Schipper, L.A.
Stevenson, B.A.
Turner, B.L.
Viani, R.A.G.
Wanek, W.
Zeller, B.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Suelo
Soil
Climatic Factors
Nitrogen
Isotopes
Carbon
Factores Climáticos
Nitrógeno
Isótopos
Carbono
topic Suelo
Soil
Climatic Factors
Nitrogen
Isotopes
Carbon
Factores Climáticos
Nitrógeno
Isótopos
Carbono
dc.description.none.fl_txt_mv Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Fil: Craine, Joseph M. Kansas State University. Division of Biology; Estados Unidos
Fil: Elmore, Andrew J. University of Maryland Center for Environmental Science. Appalachian Laboratory; Estados Unidos
Fil: Wang, Lixing. Indiana University-Purdue University Department of Earth Sciences; Estados Unidos
Fil: Augusto, Laurent. INRA. Bordeaux Sciences Agro; Francia
Fil: Baisden, Troy. GNS Science. National Isotope Centre; Nueva Zelanda
Fil: Brookshire, E.N.J. Montana State University. Department of Land Resources and Environmental Sciences; Estados Unidos
Fil: Cramer, Michael D. University of Cape Town. Department of Biological Sciences; Sudáfrica
Fil: Hasselquist, Niles. Swedish University of Agricultural Sciences. Forest Ecology and Management; Suecia
Fil: Hobbie, Erik A. University of New Hampshire. Earth Systems Research Center; Estados Unidos
Fil: Kahmen, Ansgar. Departement of Environmental Sciences - Botany; Suiza
Fil: Kaba, Keisuke. Tokyo University of Agriculture and Technology. Institute of Agriculture; Japón
Fil: Kranabetter, M. British Columbia (Canadá). Ministry of Forests, Lands and Natural Resource Operations; Canadá
Fil: Mack, M. University of Florida. Department of Biology; Estados Unidos
Fil: Marin-Spiotta, E. University of Wisconsin. Department of Geography; Estados Unidos
Fil: Mayor, J.R. Swedish University of Agricultural Sciences. Department of Forest Ecology & Management; Suecia
Fil: McLauchlan, K.K. Kansas State University. Department of Geography; Estados Unidos
Fil: Michelsen, A. University of Copenhagen. Department of Biology; Dinamarca
Fil: Nardoto, G.B. Universidade de Brasília. Faculdade UnB Planaltina; Brasil
Fil: Oliveira, R.S. Universidade Estadual de Campinas. Instituto de Biologia. Departamento de Biologia Vegetal; Brasil
Fil: Perakis, S.S. Forest and Rangeland Ecosystem Science Center; Estados Unidos
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Universidad Nacional de la Patagonia Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Quesada, C. Instituto Nacional de Pesquisas da Amazonia. Coordenação de Dinâmica Ambiental; Brasil
Fil: Richter, A. University of Vienna. Department of Terrestrial Ecosystem Research; Austria
Fil: Schipper, L.A. University of Waikato. Environmental Research Institute; Nueva Zelanda
Fil: Stevenson, B.A. Landcare Research; Nueva Zelanda
Fil: Turner, B.L. Smithsonian Tropical Research Institute; Panamá
Fil: Viani, R.A.G. Universidade Federal de São Carlos. Centro de Ciências Agrárias; Brasil
Fil: Wanek, W. University of Vienna. Department of Terrestrial Ecosystem Research; Austria
Fil: Zeller, B. INRA Nancy. Biogéochimie des Ecosystèmes Forestiers; Francia
description Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
publishDate 2015
dc.date.none.fl_str_mv 2015-02-06
2017-09-05T14:51:04Z
2017-09-05T14:51:04Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/1132
https://www.nature.com/articles/srep08280
2045-2322
https://doi.org/10.1038/srep08280
url http://hdl.handle.net/20.500.12123/1132
https://www.nature.com/articles/srep08280
https://doi.org/10.1038/srep08280
identifier_str_mv 2045-2322
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scientific reports 5 (8280) : 1-8. (2015)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341349756502016
score 12.623145