Convergence of soil nitrogen isotopes across global climate gradients
- Autores
- Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E.N.J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo Luis; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A.G.; Wanek, Wolfgang; Zeller, Bernd
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MATof 9.8°C, soil Δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil Δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Fil: Craine, Joseph M.. Kansas State University; Estados Unidos
Fil: Elmore, Andrew J.. University of Maryland; Estados Unidos
Fil: Wang, Lixin. Indiana University; Estados Unidos
Fil: Augusto, Laurent. Institut National de la Recherche Agronomique; Francia
Fil: Baisden, W. Troy. National Isotope Centre; Nueva Zelanda
Fil: Brookshire, E.N.J.. State University of Montana; Estados Unidos
Fil: Cramer, Michael D.. University Of Cape Town; Sudáfrica
Fil: Hasselquist, Niles J.. Swedish University of Agricultural Sciences; Suecia
Fil: Hobbie, Erik A.. University System Of New Hampshire; Estados Unidos
Fil: Kahmen, Ansgar. Departement Of Environmental Sciences-Botany; Suecia
Fil: Koba, Keisuke. Tokyo University Of Agriculture And Technology; Japón
Fil: Kranabetter, J. Marty. University of British Columbia; Canadá
Fil: Mack, Michelle C.. University of Florida; Estados Unidos
Fil: Marin-Spiotta, Erika. University of Wisconsin; Estados Unidos
Fil: Mayor, Jordan R.. Swedish University of Agricultural Sciences; Suecia
Fil: McLauchlan, Kendra K.. University of Kansas; Estados Unidos
Fil: Michelsen, Anders. Universidad de Copenhagen; Dinamarca
Fil: Nardoto, Gabriela B.. Universidade do Brasília; Brasil
Fil: Oliveira, Rafael S.. Universidade Estadual de Campinas; Brasil
Fil: Perakis, Steven S.. United States Geological Survey; Estados Unidos
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Quesada, Carlos A.. Instituto Nacional de Pesquisas da Amazônia; Brasil
Fil: Richter, Andreas. Universidad de Viena; Austria
Fil: Schipper, Louis A.. University Of Waikato; Nueva Zelanda
Fil: Stevenson, Bryan A.. Landcare Research, Hamilton; Nueva Zelanda
Fil: Turner, Benjamin L.. Smithsonian Tropical Research Institute; Panamá
Fil: Viani, Ricardo A.G.. Universidade Federal do São Carlos; Brasil
Fil: Wanek, Wolfgang. Universidad de Viena; Austria
Fil: Zeller, Bernd. Institut National de la Recherche Agronomique; Francia - Materia
-
NITROGEN
STABLE ISOTOPE
ECOSYSTEM ECOLOGY
PRECIPITATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51709
Ver los metadatos del registro completo
id |
CONICETDig_d269ff05e91ba647b8c0afc843432ebe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51709 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence of soil nitrogen isotopes across global climate gradientsCraine, Joseph M.Elmore, Andrew J.Wang, LixinAugusto, LaurentBaisden, W. TroyBrookshire, E.N.J.Cramer, Michael D.Hasselquist, Niles J.Hobbie, Erik A.Kahmen, AnsgarKoba, KeisukeKranabetter, J. MartyMack, Michelle C.Marin-Spiotta, ErikaMayor, Jordan R.McLauchlan, Kendra K.Michelsen, AndersNardoto, Gabriela B.Oliveira, Rafael S.Perakis, Steven S.Peri, Pablo LuisQuesada, Carlos A.Richter, AndreasSchipper, Louis A.Stevenson, Bryan A.Turner, Benjamin L.Viani, Ricardo A.G.Wanek, WolfgangZeller, BerndNITROGENSTABLE ISOTOPEECOSYSTEM ECOLOGYPRECIPITATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MATof 9.8°C, soil Δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil Δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.Fil: Craine, Joseph M.. Kansas State University; Estados UnidosFil: Elmore, Andrew J.. University of Maryland; Estados UnidosFil: Wang, Lixin. Indiana University; Estados UnidosFil: Augusto, Laurent. Institut National de la Recherche Agronomique; FranciaFil: Baisden, W. Troy. National Isotope Centre; Nueva ZelandaFil: Brookshire, E.N.J.. State University of Montana; Estados UnidosFil: Cramer, Michael D.. University Of Cape Town; SudáfricaFil: Hasselquist, Niles J.. Swedish University of Agricultural Sciences; SueciaFil: Hobbie, Erik A.. University System Of New Hampshire; Estados UnidosFil: Kahmen, Ansgar. Departement Of Environmental Sciences-Botany; SueciaFil: Koba, Keisuke. Tokyo University Of Agriculture And Technology; JapónFil: Kranabetter, J. Marty. University of British Columbia; CanadáFil: Mack, Michelle C.. University of Florida; Estados UnidosFil: Marin-Spiotta, Erika. University of Wisconsin; Estados UnidosFil: Mayor, Jordan R.. Swedish University of Agricultural Sciences; SueciaFil: McLauchlan, Kendra K.. University of Kansas; Estados UnidosFil: Michelsen, Anders. Universidad de Copenhagen; DinamarcaFil: Nardoto, Gabriela B.. Universidade do Brasília; BrasilFil: Oliveira, Rafael S.. Universidade Estadual de Campinas; BrasilFil: Perakis, Steven S.. United States Geological Survey; Estados UnidosFil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Quesada, Carlos A.. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Richter, Andreas. Universidad de Viena; AustriaFil: Schipper, Louis A.. University Of Waikato; Nueva ZelandaFil: Stevenson, Bryan A.. Landcare Research, Hamilton; Nueva ZelandaFil: Turner, Benjamin L.. Smithsonian Tropical Research Institute; PanamáFil: Viani, Ricardo A.G.. Universidade Federal do São Carlos; BrasilFil: Wanek, Wolfgang. Universidad de Viena; AustriaFil: Zeller, Bernd. Institut National de la Recherche Agronomique; FranciaNature Publishing Group2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51709Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; et al.; Convergence of soil nitrogen isotopes across global climate gradients; Nature Publishing Group; Scientific Reports; 5; 8280; 2-2015; 1-82045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/srep08280info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep08280info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:47Zoai:ri.conicet.gov.ar:11336/51709instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:47.902CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence of soil nitrogen isotopes across global climate gradients |
title |
Convergence of soil nitrogen isotopes across global climate gradients |
spellingShingle |
Convergence of soil nitrogen isotopes across global climate gradients Craine, Joseph M. NITROGEN STABLE ISOTOPE ECOSYSTEM ECOLOGY PRECIPITATION |
title_short |
Convergence of soil nitrogen isotopes across global climate gradients |
title_full |
Convergence of soil nitrogen isotopes across global climate gradients |
title_fullStr |
Convergence of soil nitrogen isotopes across global climate gradients |
title_full_unstemmed |
Convergence of soil nitrogen isotopes across global climate gradients |
title_sort |
Convergence of soil nitrogen isotopes across global climate gradients |
dc.creator.none.fl_str_mv |
Craine, Joseph M. Elmore, Andrew J. Wang, Lixin Augusto, Laurent Baisden, W. Troy Brookshire, E.N.J. Cramer, Michael D. Hasselquist, Niles J. Hobbie, Erik A. Kahmen, Ansgar Koba, Keisuke Kranabetter, J. Marty Mack, Michelle C. Marin-Spiotta, Erika Mayor, Jordan R. McLauchlan, Kendra K. Michelsen, Anders Nardoto, Gabriela B. Oliveira, Rafael S. Perakis, Steven S. Peri, Pablo Luis Quesada, Carlos A. Richter, Andreas Schipper, Louis A. Stevenson, Bryan A. Turner, Benjamin L. Viani, Ricardo A.G. Wanek, Wolfgang Zeller, Bernd |
author |
Craine, Joseph M. |
author_facet |
Craine, Joseph M. Elmore, Andrew J. Wang, Lixin Augusto, Laurent Baisden, W. Troy Brookshire, E.N.J. Cramer, Michael D. Hasselquist, Niles J. Hobbie, Erik A. Kahmen, Ansgar Koba, Keisuke Kranabetter, J. Marty Mack, Michelle C. Marin-Spiotta, Erika Mayor, Jordan R. McLauchlan, Kendra K. Michelsen, Anders Nardoto, Gabriela B. Oliveira, Rafael S. Perakis, Steven S. Peri, Pablo Luis Quesada, Carlos A. Richter, Andreas Schipper, Louis A. Stevenson, Bryan A. Turner, Benjamin L. Viani, Ricardo A.G. Wanek, Wolfgang Zeller, Bernd |
author_role |
author |
author2 |
Elmore, Andrew J. Wang, Lixin Augusto, Laurent Baisden, W. Troy Brookshire, E.N.J. Cramer, Michael D. Hasselquist, Niles J. Hobbie, Erik A. Kahmen, Ansgar Koba, Keisuke Kranabetter, J. Marty Mack, Michelle C. Marin-Spiotta, Erika Mayor, Jordan R. McLauchlan, Kendra K. Michelsen, Anders Nardoto, Gabriela B. Oliveira, Rafael S. Perakis, Steven S. Peri, Pablo Luis Quesada, Carlos A. Richter, Andreas Schipper, Louis A. Stevenson, Bryan A. Turner, Benjamin L. Viani, Ricardo A.G. Wanek, Wolfgang Zeller, Bernd |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
NITROGEN STABLE ISOTOPE ECOSYSTEM ECOLOGY PRECIPITATION |
topic |
NITROGEN STABLE ISOTOPE ECOSYSTEM ECOLOGY PRECIPITATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MATof 9.8°C, soil Δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil Δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss. Fil: Craine, Joseph M.. Kansas State University; Estados Unidos Fil: Elmore, Andrew J.. University of Maryland; Estados Unidos Fil: Wang, Lixin. Indiana University; Estados Unidos Fil: Augusto, Laurent. Institut National de la Recherche Agronomique; Francia Fil: Baisden, W. Troy. National Isotope Centre; Nueva Zelanda Fil: Brookshire, E.N.J.. State University of Montana; Estados Unidos Fil: Cramer, Michael D.. University Of Cape Town; Sudáfrica Fil: Hasselquist, Niles J.. Swedish University of Agricultural Sciences; Suecia Fil: Hobbie, Erik A.. University System Of New Hampshire; Estados Unidos Fil: Kahmen, Ansgar. Departement Of Environmental Sciences-Botany; Suecia Fil: Koba, Keisuke. Tokyo University Of Agriculture And Technology; Japón Fil: Kranabetter, J. Marty. University of British Columbia; Canadá Fil: Mack, Michelle C.. University of Florida; Estados Unidos Fil: Marin-Spiotta, Erika. University of Wisconsin; Estados Unidos Fil: Mayor, Jordan R.. Swedish University of Agricultural Sciences; Suecia Fil: McLauchlan, Kendra K.. University of Kansas; Estados Unidos Fil: Michelsen, Anders. Universidad de Copenhagen; Dinamarca Fil: Nardoto, Gabriela B.. Universidade do Brasília; Brasil Fil: Oliveira, Rafael S.. Universidade Estadual de Campinas; Brasil Fil: Perakis, Steven S.. United States Geological Survey; Estados Unidos Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Quesada, Carlos A.. Instituto Nacional de Pesquisas da Amazônia; Brasil Fil: Richter, Andreas. Universidad de Viena; Austria Fil: Schipper, Louis A.. University Of Waikato; Nueva Zelanda Fil: Stevenson, Bryan A.. Landcare Research, Hamilton; Nueva Zelanda Fil: Turner, Benjamin L.. Smithsonian Tropical Research Institute; Panamá Fil: Viani, Ricardo A.G.. Universidade Federal do São Carlos; Brasil Fil: Wanek, Wolfgang. Universidad de Viena; Austria Fil: Zeller, Bernd. Institut National de la Recherche Agronomique; Francia |
description |
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MATof 9.8°C, soil Δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil Δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51709 Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; et al.; Convergence of soil nitrogen isotopes across global climate gradients; Nature Publishing Group; Scientific Reports; 5; 8280; 2-2015; 1-8 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51709 |
identifier_str_mv |
Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; et al.; Convergence of soil nitrogen isotopes across global climate gradients; Nature Publishing Group; Scientific Reports; 5; 8280; 2-2015; 1-8 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/srep08280 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep08280 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269659764621312 |
score |
13.13397 |