Convergence of soil nitrogen isotopes across global climate gradients

Autores
Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E.N.J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo Luis; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A.G.; Wanek, Wolfgang; Zeller, Bernd
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MATof 9.8°C, soil Δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil Δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Fil: Craine, Joseph M.. Kansas State University; Estados Unidos
Fil: Elmore, Andrew J.. University of Maryland; Estados Unidos
Fil: Wang, Lixin. Indiana University; Estados Unidos
Fil: Augusto, Laurent. Institut National de la Recherche Agronomique; Francia
Fil: Baisden, W. Troy. National Isotope Centre; Nueva Zelanda
Fil: Brookshire, E.N.J.. State University of Montana; Estados Unidos
Fil: Cramer, Michael D.. University Of Cape Town; Sudáfrica
Fil: Hasselquist, Niles J.. Swedish University of Agricultural Sciences; Suecia
Fil: Hobbie, Erik A.. University System Of New Hampshire; Estados Unidos
Fil: Kahmen, Ansgar. Departement Of Environmental Sciences-Botany; Suecia
Fil: Koba, Keisuke. Tokyo University Of Agriculture And Technology; Japón
Fil: Kranabetter, J. Marty. University of British Columbia; Canadá
Fil: Mack, Michelle C.. University of Florida; Estados Unidos
Fil: Marin-Spiotta, Erika. University of Wisconsin; Estados Unidos
Fil: Mayor, Jordan R.. Swedish University of Agricultural Sciences; Suecia
Fil: McLauchlan, Kendra K.. University of Kansas; Estados Unidos
Fil: Michelsen, Anders. Universidad de Copenhagen; Dinamarca
Fil: Nardoto, Gabriela B.. Universidade do Brasília; Brasil
Fil: Oliveira, Rafael S.. Universidade Estadual de Campinas; Brasil
Fil: Perakis, Steven S.. United States Geological Survey; Estados Unidos
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Quesada, Carlos A.. Instituto Nacional de Pesquisas da Amazônia; Brasil
Fil: Richter, Andreas. Universidad de Viena; Austria
Fil: Schipper, Louis A.. University Of Waikato; Nueva Zelanda
Fil: Stevenson, Bryan A.. Landcare Research, Hamilton; Nueva Zelanda
Fil: Turner, Benjamin L.. Smithsonian Tropical Research Institute; Panamá
Fil: Viani, Ricardo A.G.. Universidade Federal do São Carlos; Brasil
Fil: Wanek, Wolfgang. Universidad de Viena; Austria
Fil: Zeller, Bernd. Institut National de la Recherche Agronomique; Francia
Materia
NITROGEN
STABLE ISOTOPE
ECOSYSTEM ECOLOGY
PRECIPITATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/51709

id CONICETDig_d269ff05e91ba647b8c0afc843432ebe
oai_identifier_str oai:ri.conicet.gov.ar:11336/51709
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Convergence of soil nitrogen isotopes across global climate gradientsCraine, Joseph M.Elmore, Andrew J.Wang, LixinAugusto, LaurentBaisden, W. TroyBrookshire, E.N.J.Cramer, Michael D.Hasselquist, Niles J.Hobbie, Erik A.Kahmen, AnsgarKoba, KeisukeKranabetter, J. MartyMack, Michelle C.Marin-Spiotta, ErikaMayor, Jordan R.McLauchlan, Kendra K.Michelsen, AndersNardoto, Gabriela B.Oliveira, Rafael S.Perakis, Steven S.Peri, Pablo LuisQuesada, Carlos A.Richter, AndreasSchipper, Louis A.Stevenson, Bryan A.Turner, Benjamin L.Viani, Ricardo A.G.Wanek, WolfgangZeller, BerndNITROGENSTABLE ISOTOPEECOSYSTEM ECOLOGYPRECIPITATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MATof 9.8°C, soil Δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil Δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.Fil: Craine, Joseph M.. Kansas State University; Estados UnidosFil: Elmore, Andrew J.. University of Maryland; Estados UnidosFil: Wang, Lixin. Indiana University; Estados UnidosFil: Augusto, Laurent. Institut National de la Recherche Agronomique; FranciaFil: Baisden, W. Troy. National Isotope Centre; Nueva ZelandaFil: Brookshire, E.N.J.. State University of Montana; Estados UnidosFil: Cramer, Michael D.. University Of Cape Town; SudáfricaFil: Hasselquist, Niles J.. Swedish University of Agricultural Sciences; SueciaFil: Hobbie, Erik A.. University System Of New Hampshire; Estados UnidosFil: Kahmen, Ansgar. Departement Of Environmental Sciences-Botany; SueciaFil: Koba, Keisuke. Tokyo University Of Agriculture And Technology; JapónFil: Kranabetter, J. Marty. University of British Columbia; CanadáFil: Mack, Michelle C.. University of Florida; Estados UnidosFil: Marin-Spiotta, Erika. University of Wisconsin; Estados UnidosFil: Mayor, Jordan R.. Swedish University of Agricultural Sciences; SueciaFil: McLauchlan, Kendra K.. University of Kansas; Estados UnidosFil: Michelsen, Anders. Universidad de Copenhagen; DinamarcaFil: Nardoto, Gabriela B.. Universidade do Brasília; BrasilFil: Oliveira, Rafael S.. Universidade Estadual de Campinas; BrasilFil: Perakis, Steven S.. United States Geological Survey; Estados UnidosFil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Quesada, Carlos A.. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Richter, Andreas. Universidad de Viena; AustriaFil: Schipper, Louis A.. University Of Waikato; Nueva ZelandaFil: Stevenson, Bryan A.. Landcare Research, Hamilton; Nueva ZelandaFil: Turner, Benjamin L.. Smithsonian Tropical Research Institute; PanamáFil: Viani, Ricardo A.G.. Universidade Federal do São Carlos; BrasilFil: Wanek, Wolfgang. Universidad de Viena; AustriaFil: Zeller, Bernd. Institut National de la Recherche Agronomique; FranciaNature Publishing Group2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51709Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; et al.; Convergence of soil nitrogen isotopes across global climate gradients; Nature Publishing Group; Scientific Reports; 5; 8280; 2-2015; 1-82045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/srep08280info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep08280info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:47Zoai:ri.conicet.gov.ar:11336/51709instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:47.902CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Convergence of soil nitrogen isotopes across global climate gradients
title Convergence of soil nitrogen isotopes across global climate gradients
spellingShingle Convergence of soil nitrogen isotopes across global climate gradients
Craine, Joseph M.
NITROGEN
STABLE ISOTOPE
ECOSYSTEM ECOLOGY
PRECIPITATION
title_short Convergence of soil nitrogen isotopes across global climate gradients
title_full Convergence of soil nitrogen isotopes across global climate gradients
title_fullStr Convergence of soil nitrogen isotopes across global climate gradients
title_full_unstemmed Convergence of soil nitrogen isotopes across global climate gradients
title_sort Convergence of soil nitrogen isotopes across global climate gradients
dc.creator.none.fl_str_mv Craine, Joseph M.
Elmore, Andrew J.
Wang, Lixin
Augusto, Laurent
Baisden, W. Troy
Brookshire, E.N.J.
Cramer, Michael D.
Hasselquist, Niles J.
Hobbie, Erik A.
Kahmen, Ansgar
Koba, Keisuke
Kranabetter, J. Marty
Mack, Michelle C.
Marin-Spiotta, Erika
Mayor, Jordan R.
McLauchlan, Kendra K.
Michelsen, Anders
Nardoto, Gabriela B.
Oliveira, Rafael S.
Perakis, Steven S.
Peri, Pablo Luis
Quesada, Carlos A.
Richter, Andreas
Schipper, Louis A.
Stevenson, Bryan A.
Turner, Benjamin L.
Viani, Ricardo A.G.
Wanek, Wolfgang
Zeller, Bernd
author Craine, Joseph M.
author_facet Craine, Joseph M.
Elmore, Andrew J.
Wang, Lixin
Augusto, Laurent
Baisden, W. Troy
Brookshire, E.N.J.
Cramer, Michael D.
Hasselquist, Niles J.
Hobbie, Erik A.
Kahmen, Ansgar
Koba, Keisuke
Kranabetter, J. Marty
Mack, Michelle C.
Marin-Spiotta, Erika
Mayor, Jordan R.
McLauchlan, Kendra K.
Michelsen, Anders
Nardoto, Gabriela B.
Oliveira, Rafael S.
Perakis, Steven S.
Peri, Pablo Luis
Quesada, Carlos A.
Richter, Andreas
Schipper, Louis A.
Stevenson, Bryan A.
Turner, Benjamin L.
Viani, Ricardo A.G.
Wanek, Wolfgang
Zeller, Bernd
author_role author
author2 Elmore, Andrew J.
Wang, Lixin
Augusto, Laurent
Baisden, W. Troy
Brookshire, E.N.J.
Cramer, Michael D.
Hasselquist, Niles J.
Hobbie, Erik A.
Kahmen, Ansgar
Koba, Keisuke
Kranabetter, J. Marty
Mack, Michelle C.
Marin-Spiotta, Erika
Mayor, Jordan R.
McLauchlan, Kendra K.
Michelsen, Anders
Nardoto, Gabriela B.
Oliveira, Rafael S.
Perakis, Steven S.
Peri, Pablo Luis
Quesada, Carlos A.
Richter, Andreas
Schipper, Louis A.
Stevenson, Bryan A.
Turner, Benjamin L.
Viani, Ricardo A.G.
Wanek, Wolfgang
Zeller, Bernd
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv NITROGEN
STABLE ISOTOPE
ECOSYSTEM ECOLOGY
PRECIPITATION
topic NITROGEN
STABLE ISOTOPE
ECOSYSTEM ECOLOGY
PRECIPITATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MATof 9.8°C, soil Δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil Δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Fil: Craine, Joseph M.. Kansas State University; Estados Unidos
Fil: Elmore, Andrew J.. University of Maryland; Estados Unidos
Fil: Wang, Lixin. Indiana University; Estados Unidos
Fil: Augusto, Laurent. Institut National de la Recherche Agronomique; Francia
Fil: Baisden, W. Troy. National Isotope Centre; Nueva Zelanda
Fil: Brookshire, E.N.J.. State University of Montana; Estados Unidos
Fil: Cramer, Michael D.. University Of Cape Town; Sudáfrica
Fil: Hasselquist, Niles J.. Swedish University of Agricultural Sciences; Suecia
Fil: Hobbie, Erik A.. University System Of New Hampshire; Estados Unidos
Fil: Kahmen, Ansgar. Departement Of Environmental Sciences-Botany; Suecia
Fil: Koba, Keisuke. Tokyo University Of Agriculture And Technology; Japón
Fil: Kranabetter, J. Marty. University of British Columbia; Canadá
Fil: Mack, Michelle C.. University of Florida; Estados Unidos
Fil: Marin-Spiotta, Erika. University of Wisconsin; Estados Unidos
Fil: Mayor, Jordan R.. Swedish University of Agricultural Sciences; Suecia
Fil: McLauchlan, Kendra K.. University of Kansas; Estados Unidos
Fil: Michelsen, Anders. Universidad de Copenhagen; Dinamarca
Fil: Nardoto, Gabriela B.. Universidade do Brasília; Brasil
Fil: Oliveira, Rafael S.. Universidade Estadual de Campinas; Brasil
Fil: Perakis, Steven S.. United States Geological Survey; Estados Unidos
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Quesada, Carlos A.. Instituto Nacional de Pesquisas da Amazônia; Brasil
Fil: Richter, Andreas. Universidad de Viena; Austria
Fil: Schipper, Louis A.. University Of Waikato; Nueva Zelanda
Fil: Stevenson, Bryan A.. Landcare Research, Hamilton; Nueva Zelanda
Fil: Turner, Benjamin L.. Smithsonian Tropical Research Institute; Panamá
Fil: Viani, Ricardo A.G.. Universidade Federal do São Carlos; Brasil
Fil: Wanek, Wolfgang. Universidad de Viena; Austria
Fil: Zeller, Bernd. Institut National de la Recherche Agronomique; Francia
description Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MATof 9.8°C, soil Δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil Δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
publishDate 2015
dc.date.none.fl_str_mv 2015-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/51709
Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; et al.; Convergence of soil nitrogen isotopes across global climate gradients; Nature Publishing Group; Scientific Reports; 5; 8280; 2-2015; 1-8
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/51709
identifier_str_mv Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; et al.; Convergence of soil nitrogen isotopes across global climate gradients; Nature Publishing Group; Scientific Reports; 5; 8280; 2-2015; 1-8
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/srep08280
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep08280
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269659764621312
score 13.13397