Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean

Autores
Salvagiotti, Fernando; Magnano, Luciana; Ortez, Osler; Enrico, Juan Martin; Barraco, Miriam Raquel; Barbagelata, Pedro Anibal; Condori, Alicia Adelina; Di Mauro, Guido; Manlla, Amalia Graciela; Rotundo, Jose Luis; García, Fernando O.; Ferrari, Manuel Carlos; Gudelj, Vicente Jorge; Ciampitti, Ignacio A.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Estimation of crop nutrient demand, seed nutrient removal, and nutrient use efficiency (yield to nutrient uptake ratio) are crucial for pursuing both balanced nutrition and more sustainable farming systems. However, the estimation of the nutrient requirements as the nutrient uptake per unit of seed yields is impaired in many situations due to the narrow variation of the dataset used to obtain these values or by the overgeneralization of considering a constant value for the nutrient demand at varying yield levels. Past studies focused on other crops and using linear models for estimation of the nutrient requirements, but not yet for soybeans (Glycine max L.). The aims of this research study were to: (i) quantify nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) requirements in soybean and (ii) compare linear and non-linear (spherical) models in their relationship between plant and seed nutrient content all relative to seed yield at varying probabilities utilizing quantile regression. A large dataset from different studies conducted between 2009–2018 period, including data of seed yield, total biomass at physiological maturity, and N, P, K, and S uptake. Soybean seed yield ranged from 955 to 6525 kg ha−1, aboveground biomass from 1990 to 15,814 kg ha−1, and harvest index from 0.16 to 0.57. On average, nutrient uptake was 261 kg N ha−1, 25 kg P ha−1, 133 kg K ha−1, and 16 kg S ha−1 (N:P:K:S ratio = 17:1.6:8.5:1), while nutrient content in seeds averaged 191 kg N ha−1, 17 kg P ha−1, 54 kg K ha−1, and 9 kg S ha−1 (N:P:K:S ratio = 21:1.8:5.8:1). The spherical model described better than the linear model the relationship between plant nutrient uptake or nutrient content in seeds with seed yield in soybean, and thus, nutrient requirements per unit of yield decreased as seed yield increased. A relationship between nutrient internal efficiency and seed yield for the different percentiles as determined by the non-linear quantile regression offered probabilistic values for estimating nutrient uptake in soybean, providing useful information for obtaining more reliable estimates of nutrient balances at the system-level.
EEA Oliveros
Fil: Salvagiotti, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Salvagiotti, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Magnano, Luciana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Ortez, Osler. University of Nebraska-Lincoln. Department of Agronomy and Horticulture; Estados Unidos
Fil: Enrico, Juan Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Barraco, Mariam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria General Villegas; Argentina.
Fil: Barbagelata, Pedro Anibal. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina
Fil: Condori, Alicia Adelina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Di Mauro, Guido. Corteva Agriscience. Predictive Agriculture; Estados Unidos
Fil: Manlla, Amalia Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Rotundo, José Luis. Corteva Agriscience. Predictive Agriculture; Estados Unidos
Fil: García, Fernando O. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Ferrari, Manuel Carlos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino; Argentina
Fil: Gudelj, Vicente Jorge. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; Argentina
Fil: Ciampitti, Ignacio A. Kansas State University. Department of Agronomy; Estados Unidos
Fuente
European Journal of Agronomy 127 : 126289 (July 2021)
Materia
Soja
Nutrientes
Nitrógeno
Fósforo
Potasio
Azufre
Absorción de Sustancias Nutritivas
Soybeans
Nutrients
Nitrogen
Phosphorus
Potassium
Sulphur
Nutrient Uptake
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/9247

id INTADig_6083d903ac358170cda6c80c72ad9023
oai_identifier_str oai:localhost:20.500.12123/9247
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybeanSalvagiotti, FernandoMagnano, LucianaOrtez, OslerEnrico, Juan MartinBarraco, Miriam RaquelBarbagelata, Pedro AnibalCondori, Alicia AdelinaDi Mauro, GuidoManlla, Amalia GracielaRotundo, Jose LuisGarcía, Fernando O.Ferrari, Manuel CarlosGudelj, Vicente JorgeCiampitti, Ignacio A.SojaNutrientesNitrógenoFósforoPotasioAzufreAbsorción de Sustancias NutritivasSoybeansNutrientsNitrogenPhosphorusPotassiumSulphurNutrient UptakeEstimation of crop nutrient demand, seed nutrient removal, and nutrient use efficiency (yield to nutrient uptake ratio) are crucial for pursuing both balanced nutrition and more sustainable farming systems. However, the estimation of the nutrient requirements as the nutrient uptake per unit of seed yields is impaired in many situations due to the narrow variation of the dataset used to obtain these values or by the overgeneralization of considering a constant value for the nutrient demand at varying yield levels. Past studies focused on other crops and using linear models for estimation of the nutrient requirements, but not yet for soybeans (Glycine max L.). The aims of this research study were to: (i) quantify nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) requirements in soybean and (ii) compare linear and non-linear (spherical) models in their relationship between plant and seed nutrient content all relative to seed yield at varying probabilities utilizing quantile regression. A large dataset from different studies conducted between 2009–2018 period, including data of seed yield, total biomass at physiological maturity, and N, P, K, and S uptake. Soybean seed yield ranged from 955 to 6525 kg ha−1, aboveground biomass from 1990 to 15,814 kg ha−1, and harvest index from 0.16 to 0.57. On average, nutrient uptake was 261 kg N ha−1, 25 kg P ha−1, 133 kg K ha−1, and 16 kg S ha−1 (N:P:K:S ratio = 17:1.6:8.5:1), while nutrient content in seeds averaged 191 kg N ha−1, 17 kg P ha−1, 54 kg K ha−1, and 9 kg S ha−1 (N:P:K:S ratio = 21:1.8:5.8:1). The spherical model described better than the linear model the relationship between plant nutrient uptake or nutrient content in seeds with seed yield in soybean, and thus, nutrient requirements per unit of yield decreased as seed yield increased. A relationship between nutrient internal efficiency and seed yield for the different percentiles as determined by the non-linear quantile regression offered probabilistic values for estimating nutrient uptake in soybean, providing useful information for obtaining more reliable estimates of nutrient balances at the system-level.EEA OliverosFil: Salvagiotti, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Salvagiotti, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Magnano, Luciana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Ortez, Osler. University of Nebraska-Lincoln. Department of Agronomy and Horticulture; Estados UnidosFil: Enrico, Juan Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Barraco, Mariam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria General Villegas; Argentina.Fil: Barbagelata, Pedro Anibal. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; ArgentinaFil: Condori, Alicia Adelina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Di Mauro, Guido. Corteva Agriscience. Predictive Agriculture; Estados UnidosFil: Manlla, Amalia Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Rotundo, José Luis. Corteva Agriscience. Predictive Agriculture; Estados UnidosFil: García, Fernando O. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Ferrari, Manuel Carlos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino; ArgentinaFil: Gudelj, Vicente Jorge. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; ArgentinaFil: Ciampitti, Ignacio A. Kansas State University. Department of Agronomy; Estados UnidosElsevier2021-05-03T13:21:42Z2021-05-03T13:21:42Z2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/9247https://www.sciencedirect.com/science/article/abs/pii/S11610301210006171161-0301https://doi.org/10.1016/j.eja.2021.126289European Journal of Agronomy 127 : 126289 (July 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/PNCER-022421/AR./Diagnostico, reposición de macronutrientes y tecnología de la fertilización.info:eu-repograntAgreement/INTA/PNCYO-1127033/AR./Manejo nutricional de cereales y oleaginosas para la intensificación sustentable de los sistemas productivosinfo:eu-repo/semantics/restrictedAccess2025-09-04T09:48:52Zoai:localhost:20.500.12123/9247instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:48:53.157INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean
title Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean
spellingShingle Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean
Salvagiotti, Fernando
Soja
Nutrientes
Nitrógeno
Fósforo
Potasio
Azufre
Absorción de Sustancias Nutritivas
Soybeans
Nutrients
Nitrogen
Phosphorus
Potassium
Sulphur
Nutrient Uptake
title_short Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean
title_full Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean
title_fullStr Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean
title_full_unstemmed Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean
title_sort Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean
dc.creator.none.fl_str_mv Salvagiotti, Fernando
Magnano, Luciana
Ortez, Osler
Enrico, Juan Martin
Barraco, Miriam Raquel
Barbagelata, Pedro Anibal
Condori, Alicia Adelina
Di Mauro, Guido
Manlla, Amalia Graciela
Rotundo, Jose Luis
García, Fernando O.
Ferrari, Manuel Carlos
Gudelj, Vicente Jorge
Ciampitti, Ignacio A.
author Salvagiotti, Fernando
author_facet Salvagiotti, Fernando
Magnano, Luciana
Ortez, Osler
Enrico, Juan Martin
Barraco, Miriam Raquel
Barbagelata, Pedro Anibal
Condori, Alicia Adelina
Di Mauro, Guido
Manlla, Amalia Graciela
Rotundo, Jose Luis
García, Fernando O.
Ferrari, Manuel Carlos
Gudelj, Vicente Jorge
Ciampitti, Ignacio A.
author_role author
author2 Magnano, Luciana
Ortez, Osler
Enrico, Juan Martin
Barraco, Miriam Raquel
Barbagelata, Pedro Anibal
Condori, Alicia Adelina
Di Mauro, Guido
Manlla, Amalia Graciela
Rotundo, Jose Luis
García, Fernando O.
Ferrari, Manuel Carlos
Gudelj, Vicente Jorge
Ciampitti, Ignacio A.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Soja
Nutrientes
Nitrógeno
Fósforo
Potasio
Azufre
Absorción de Sustancias Nutritivas
Soybeans
Nutrients
Nitrogen
Phosphorus
Potassium
Sulphur
Nutrient Uptake
topic Soja
Nutrientes
Nitrógeno
Fósforo
Potasio
Azufre
Absorción de Sustancias Nutritivas
Soybeans
Nutrients
Nitrogen
Phosphorus
Potassium
Sulphur
Nutrient Uptake
dc.description.none.fl_txt_mv Estimation of crop nutrient demand, seed nutrient removal, and nutrient use efficiency (yield to nutrient uptake ratio) are crucial for pursuing both balanced nutrition and more sustainable farming systems. However, the estimation of the nutrient requirements as the nutrient uptake per unit of seed yields is impaired in many situations due to the narrow variation of the dataset used to obtain these values or by the overgeneralization of considering a constant value for the nutrient demand at varying yield levels. Past studies focused on other crops and using linear models for estimation of the nutrient requirements, but not yet for soybeans (Glycine max L.). The aims of this research study were to: (i) quantify nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) requirements in soybean and (ii) compare linear and non-linear (spherical) models in their relationship between plant and seed nutrient content all relative to seed yield at varying probabilities utilizing quantile regression. A large dataset from different studies conducted between 2009–2018 period, including data of seed yield, total biomass at physiological maturity, and N, P, K, and S uptake. Soybean seed yield ranged from 955 to 6525 kg ha−1, aboveground biomass from 1990 to 15,814 kg ha−1, and harvest index from 0.16 to 0.57. On average, nutrient uptake was 261 kg N ha−1, 25 kg P ha−1, 133 kg K ha−1, and 16 kg S ha−1 (N:P:K:S ratio = 17:1.6:8.5:1), while nutrient content in seeds averaged 191 kg N ha−1, 17 kg P ha−1, 54 kg K ha−1, and 9 kg S ha−1 (N:P:K:S ratio = 21:1.8:5.8:1). The spherical model described better than the linear model the relationship between plant nutrient uptake or nutrient content in seeds with seed yield in soybean, and thus, nutrient requirements per unit of yield decreased as seed yield increased. A relationship between nutrient internal efficiency and seed yield for the different percentiles as determined by the non-linear quantile regression offered probabilistic values for estimating nutrient uptake in soybean, providing useful information for obtaining more reliable estimates of nutrient balances at the system-level.
EEA Oliveros
Fil: Salvagiotti, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Salvagiotti, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Magnano, Luciana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Ortez, Osler. University of Nebraska-Lincoln. Department of Agronomy and Horticulture; Estados Unidos
Fil: Enrico, Juan Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Barraco, Mariam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria General Villegas; Argentina.
Fil: Barbagelata, Pedro Anibal. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina
Fil: Condori, Alicia Adelina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Di Mauro, Guido. Corteva Agriscience. Predictive Agriculture; Estados Unidos
Fil: Manlla, Amalia Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Rotundo, José Luis. Corteva Agriscience. Predictive Agriculture; Estados Unidos
Fil: García, Fernando O. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Ferrari, Manuel Carlos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino; Argentina
Fil: Gudelj, Vicente Jorge. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; Argentina
Fil: Ciampitti, Ignacio A. Kansas State University. Department of Agronomy; Estados Unidos
description Estimation of crop nutrient demand, seed nutrient removal, and nutrient use efficiency (yield to nutrient uptake ratio) are crucial for pursuing both balanced nutrition and more sustainable farming systems. However, the estimation of the nutrient requirements as the nutrient uptake per unit of seed yields is impaired in many situations due to the narrow variation of the dataset used to obtain these values or by the overgeneralization of considering a constant value for the nutrient demand at varying yield levels. Past studies focused on other crops and using linear models for estimation of the nutrient requirements, but not yet for soybeans (Glycine max L.). The aims of this research study were to: (i) quantify nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) requirements in soybean and (ii) compare linear and non-linear (spherical) models in their relationship between plant and seed nutrient content all relative to seed yield at varying probabilities utilizing quantile regression. A large dataset from different studies conducted between 2009–2018 period, including data of seed yield, total biomass at physiological maturity, and N, P, K, and S uptake. Soybean seed yield ranged from 955 to 6525 kg ha−1, aboveground biomass from 1990 to 15,814 kg ha−1, and harvest index from 0.16 to 0.57. On average, nutrient uptake was 261 kg N ha−1, 25 kg P ha−1, 133 kg K ha−1, and 16 kg S ha−1 (N:P:K:S ratio = 17:1.6:8.5:1), while nutrient content in seeds averaged 191 kg N ha−1, 17 kg P ha−1, 54 kg K ha−1, and 9 kg S ha−1 (N:P:K:S ratio = 21:1.8:5.8:1). The spherical model described better than the linear model the relationship between plant nutrient uptake or nutrient content in seeds with seed yield in soybean, and thus, nutrient requirements per unit of yield decreased as seed yield increased. A relationship between nutrient internal efficiency and seed yield for the different percentiles as determined by the non-linear quantile regression offered probabilistic values for estimating nutrient uptake in soybean, providing useful information for obtaining more reliable estimates of nutrient balances at the system-level.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-03T13:21:42Z
2021-05-03T13:21:42Z
2021-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/9247
https://www.sciencedirect.com/science/article/abs/pii/S1161030121000617
1161-0301
https://doi.org/10.1016/j.eja.2021.126289
url http://hdl.handle.net/20.500.12123/9247
https://www.sciencedirect.com/science/article/abs/pii/S1161030121000617
https://doi.org/10.1016/j.eja.2021.126289
identifier_str_mv 1161-0301
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repograntAgreement/INTA/PNCER-022421/AR./Diagnostico, reposición de macronutrientes y tecnología de la fertilización.
info:eu-repograntAgreement/INTA/PNCYO-1127033/AR./Manejo nutricional de cereales y oleaginosas para la intensificación sustentable de los sistemas productivos
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv European Journal of Agronomy 127 : 126289 (July 2021)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341386847780864
score 12.623145