On the spatio-temporal coherence of extreme precipitation indices in subtropical Argentina
- Autores
- Ricetti, Lorenzo; Hurtado, Santiago Ignacio; Agosta Scarel, Eduardo A.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study evaluates the spatio-temporal coherence of regional extreme precipitation indices in subtropical Argentina (STAr) derived from rain gauge station data from 1991 to 2021. For the regionalization two machine learning clustering algorithms are used—Ward's method and K-means—and a novel stepwise regionalization approach, HAZ. While machine learning algorithms require the apriori definition of the optimal number of clusters, which varies considerably with the used metric and selection criteria, the HAZ method relies on a Pearson's correlation coefficient threshold and avoids this limitation. In most cases machine learning algorithms struggled to produce coherent regions, with fewer clusters prioritizing spatial coherence at the expense of temporal consistency, and vice versa. Conversely, the HAZ method systematically outperformed machine learning approaches, providing regions with adequate spatio-temporal coherence. Notably, HAZ permits some stations to remain unclustered, allowing to reflect the local variability in extreme precipitation. The overall good performance of the HAZ method demonstrates its potential for broader applications in hydro-climatic studies. Moreover, two intensity indices were unsuitable for regionalization due to poor coherence, while the other three were prone to regionalization throughout the year. The Accumulated index, particularly using the 95th percentile as a threshold, emerged as the most representative, effectively synthesizing extreme precipitation characteristics in STAr. Finally, the necessity of validating the spatio-temporal internal coherence of clustering algorithms outputs is emphasized to avoid mischaracterization and ensure robust regionalization results.
EEA Bariloche
Fil: Ricetti, Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Grupo de investigación en Clima, Variabilidad y Extremos (CLAVE); Argentina
Fil: Ricetti, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Hurtado, Santiago Ignacio. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Grupo de investigación en Clima, Variabilidad y Extremos (CLAVE); Argentina
Fil: Agosta Scarel, Eduardo A. Carmelite NGO. Climate Change and Sustainability Section; Estados Unidos
Fil: Agosta Scarel, Eduardo A. Spanish Episcopal Conference. Integral Ecology Department; España - Fuente
- Atmospheric Research 320 : 108082 (July 2025)
- Materia
-
Evento Meteorológico Extremo
Precipitación Atmosférica
Lluvia Torrencial
Zona Subtropical
Argentina
Extreme Weather Events
Precipitation
Torrential Rains
Subtropical Zones - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/22031
Ver los metadatos del registro completo
id |
INTADig_3fc3ca1ed078d632157ddca69f4e781f |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/22031 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
On the spatio-temporal coherence of extreme precipitation indices in subtropical ArgentinaRicetti, LorenzoHurtado, Santiago IgnacioAgosta Scarel, Eduardo A.Evento Meteorológico ExtremoPrecipitación AtmosféricaLluvia TorrencialZona SubtropicalArgentinaExtreme Weather EventsPrecipitationTorrential RainsSubtropical ZonesThis study evaluates the spatio-temporal coherence of regional extreme precipitation indices in subtropical Argentina (STAr) derived from rain gauge station data from 1991 to 2021. For the regionalization two machine learning clustering algorithms are used—Ward's method and K-means—and a novel stepwise regionalization approach, HAZ. While machine learning algorithms require the apriori definition of the optimal number of clusters, which varies considerably with the used metric and selection criteria, the HAZ method relies on a Pearson's correlation coefficient threshold and avoids this limitation. In most cases machine learning algorithms struggled to produce coherent regions, with fewer clusters prioritizing spatial coherence at the expense of temporal consistency, and vice versa. Conversely, the HAZ method systematically outperformed machine learning approaches, providing regions with adequate spatio-temporal coherence. Notably, HAZ permits some stations to remain unclustered, allowing to reflect the local variability in extreme precipitation. The overall good performance of the HAZ method demonstrates its potential for broader applications in hydro-climatic studies. Moreover, two intensity indices were unsuitable for regionalization due to poor coherence, while the other three were prone to regionalization throughout the year. The Accumulated index, particularly using the 95th percentile as a threshold, emerged as the most representative, effectively synthesizing extreme precipitation characteristics in STAr. Finally, the necessity of validating the spatio-temporal internal coherence of clustering algorithms outputs is emphasized to avoid mischaracterization and ensure robust regionalization results.EEA BarilocheFil: Ricetti, Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Grupo de investigación en Clima, Variabilidad y Extremos (CLAVE); ArgentinaFil: Ricetti, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Hurtado, Santiago Ignacio. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Grupo de investigación en Clima, Variabilidad y Extremos (CLAVE); ArgentinaFil: Agosta Scarel, Eduardo A. Carmelite NGO. Climate Change and Sustainability Section; Estados UnidosFil: Agosta Scarel, Eduardo A. Spanish Episcopal Conference. Integral Ecology Department; EspañaElsevier2025-04-24T10:39:54Z2025-04-24T10:39:54Z2025-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/22031https://www.sciencedirect.com/science/article/abs/pii/S01698095250017470169-80951873-2895https://doi.org/10.1016/j.atmosres.2025.108082Atmospheric Research 320 : 108082 (July 2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2023-PD-L02-I091, Adaptación a la variabilidad y al cambio global: herramientas para la gestión de riesgos, la reducción de impactos y el aumento de la resiliencia de socioecosistemasinfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-11T10:25:41Zoai:localhost:20.500.12123/22031instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-11 10:25:42.297INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
On the spatio-temporal coherence of extreme precipitation indices in subtropical Argentina |
title |
On the spatio-temporal coherence of extreme precipitation indices in subtropical Argentina |
spellingShingle |
On the spatio-temporal coherence of extreme precipitation indices in subtropical Argentina Ricetti, Lorenzo Evento Meteorológico Extremo Precipitación Atmosférica Lluvia Torrencial Zona Subtropical Argentina Extreme Weather Events Precipitation Torrential Rains Subtropical Zones |
title_short |
On the spatio-temporal coherence of extreme precipitation indices in subtropical Argentina |
title_full |
On the spatio-temporal coherence of extreme precipitation indices in subtropical Argentina |
title_fullStr |
On the spatio-temporal coherence of extreme precipitation indices in subtropical Argentina |
title_full_unstemmed |
On the spatio-temporal coherence of extreme precipitation indices in subtropical Argentina |
title_sort |
On the spatio-temporal coherence of extreme precipitation indices in subtropical Argentina |
dc.creator.none.fl_str_mv |
Ricetti, Lorenzo Hurtado, Santiago Ignacio Agosta Scarel, Eduardo A. |
author |
Ricetti, Lorenzo |
author_facet |
Ricetti, Lorenzo Hurtado, Santiago Ignacio Agosta Scarel, Eduardo A. |
author_role |
author |
author2 |
Hurtado, Santiago Ignacio Agosta Scarel, Eduardo A. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Evento Meteorológico Extremo Precipitación Atmosférica Lluvia Torrencial Zona Subtropical Argentina Extreme Weather Events Precipitation Torrential Rains Subtropical Zones |
topic |
Evento Meteorológico Extremo Precipitación Atmosférica Lluvia Torrencial Zona Subtropical Argentina Extreme Weather Events Precipitation Torrential Rains Subtropical Zones |
dc.description.none.fl_txt_mv |
This study evaluates the spatio-temporal coherence of regional extreme precipitation indices in subtropical Argentina (STAr) derived from rain gauge station data from 1991 to 2021. For the regionalization two machine learning clustering algorithms are used—Ward's method and K-means—and a novel stepwise regionalization approach, HAZ. While machine learning algorithms require the apriori definition of the optimal number of clusters, which varies considerably with the used metric and selection criteria, the HAZ method relies on a Pearson's correlation coefficient threshold and avoids this limitation. In most cases machine learning algorithms struggled to produce coherent regions, with fewer clusters prioritizing spatial coherence at the expense of temporal consistency, and vice versa. Conversely, the HAZ method systematically outperformed machine learning approaches, providing regions with adequate spatio-temporal coherence. Notably, HAZ permits some stations to remain unclustered, allowing to reflect the local variability in extreme precipitation. The overall good performance of the HAZ method demonstrates its potential for broader applications in hydro-climatic studies. Moreover, two intensity indices were unsuitable for regionalization due to poor coherence, while the other three were prone to regionalization throughout the year. The Accumulated index, particularly using the 95th percentile as a threshold, emerged as the most representative, effectively synthesizing extreme precipitation characteristics in STAr. Finally, the necessity of validating the spatio-temporal internal coherence of clustering algorithms outputs is emphasized to avoid mischaracterization and ensure robust regionalization results. EEA Bariloche Fil: Ricetti, Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Grupo de investigación en Clima, Variabilidad y Extremos (CLAVE); Argentina Fil: Ricetti, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Hurtado, Santiago Ignacio. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Grupo de investigación en Clima, Variabilidad y Extremos (CLAVE); Argentina Fil: Agosta Scarel, Eduardo A. Carmelite NGO. Climate Change and Sustainability Section; Estados Unidos Fil: Agosta Scarel, Eduardo A. Spanish Episcopal Conference. Integral Ecology Department; España |
description |
This study evaluates the spatio-temporal coherence of regional extreme precipitation indices in subtropical Argentina (STAr) derived from rain gauge station data from 1991 to 2021. For the regionalization two machine learning clustering algorithms are used—Ward's method and K-means—and a novel stepwise regionalization approach, HAZ. While machine learning algorithms require the apriori definition of the optimal number of clusters, which varies considerably with the used metric and selection criteria, the HAZ method relies on a Pearson's correlation coefficient threshold and avoids this limitation. In most cases machine learning algorithms struggled to produce coherent regions, with fewer clusters prioritizing spatial coherence at the expense of temporal consistency, and vice versa. Conversely, the HAZ method systematically outperformed machine learning approaches, providing regions with adequate spatio-temporal coherence. Notably, HAZ permits some stations to remain unclustered, allowing to reflect the local variability in extreme precipitation. The overall good performance of the HAZ method demonstrates its potential for broader applications in hydro-climatic studies. Moreover, two intensity indices were unsuitable for regionalization due to poor coherence, while the other three were prone to regionalization throughout the year. The Accumulated index, particularly using the 95th percentile as a threshold, emerged as the most representative, effectively synthesizing extreme precipitation characteristics in STAr. Finally, the necessity of validating the spatio-temporal internal coherence of clustering algorithms outputs is emphasized to avoid mischaracterization and ensure robust regionalization results. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-04-24T10:39:54Z 2025-04-24T10:39:54Z 2025-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/22031 https://www.sciencedirect.com/science/article/abs/pii/S0169809525001747 0169-8095 1873-2895 https://doi.org/10.1016/j.atmosres.2025.108082 |
url |
http://hdl.handle.net/20.500.12123/22031 https://www.sciencedirect.com/science/article/abs/pii/S0169809525001747 https://doi.org/10.1016/j.atmosres.2025.108082 |
identifier_str_mv |
0169-8095 1873-2895 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/2023-PD-L02-I091, Adaptación a la variabilidad y al cambio global: herramientas para la gestión de riesgos, la reducción de impactos y el aumento de la resiliencia de socioecosistemas |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Atmospheric Research 320 : 108082 (July 2025) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842975542122381312 |
score |
12.993085 |