Effects on soybean growth and yield of wheat-soybean intercropping system

Autores
Ross, Fernando; Abbate, Pablo Eduardo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It has been demonstrated that soybean (Glycine max) produces lower yields at relay intercropping with wheat (Triticum aestivum) than if it is sown as a sole crop. However, most studies considered wider or irregular soybean row spacing, compromising its capacity to recover after wheat harvest. This work studied the stress effects in relay soybean intercropping and suggests narrowing row spacing to improve soybean performance. The aims were (i) to compare growth and yield of two planting patterns and (ii) to separate the effect of water stress (WS) from the effects of other stress factors (OSF) induced by wheat on intercropping soybean. WS was evaluated comparing above-ground dry and grain yield of irrigated and non irrigated intercropping soybean, and OSF was evaluated comparing intercropping soybean with another treatment in which wheat straw (aerial biomass) was eliminated at soybean emergence, both irrigated treatments. In wheat, similar yields were obtained in treatments with an intercropping planting pattern with two rows for wheat and one for soybean (2:1) compared to three rows for wheat and one row for soybean (3:1). However, intercropping soybean at narrow row spacing (52 cm; 2:1) improve yielded 23% more than intercropping at 70 cm (3:1). During wheat-soybean coexistence, OSF prevailed on soybean and this effect persisted in later stages. After wheat harvest, OSF reduced the amount of light interception from R1 to R5 and depressed the crop growth rate (CGR) in 34%. However, in this period, WS also affected the radiation use efficiencies (RUE) which explained the greater fraction (66%) of the total stress induced by wheat in soybean CGR. Intercrop soybean yielded 182 g m-2 less compared to the unstressed sole crop control. Considering the wheat effects on soybean growth, 63% (116.5 g m-2) of the total yield lost were due to WS. Therefore, most of the performance of relay intercropping soybean was linked with water disponibility since early stages. However, at optimum water condition wheat competition by light and resources also affected soybean yield (OSF: 37%).
EEA Barrow
Fil: Ross, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Barrow; Argentina
Fil: Abbate, Pablo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fuente
Journal of Advances In Agriculture 9 : 1498-1510. (2018)
Materia
Soja
Crecimiento
Cultivo Intercalado
Trigo
Rendimiento
Soybeans
Growth
Intercropping
Wheat
Yields
cientifico
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/6939

id INTADig_3eaf44429c7c8e1397378e9fc574dcd6
oai_identifier_str oai:localhost:20.500.12123/6939
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Effects on soybean growth and yield of wheat-soybean intercropping systemRoss, FernandoAbbate, Pablo EduardoSojaCrecimientoCultivo IntercaladoTrigoRendimientoSoybeansGrowthIntercroppingWheatYieldscientificoIt has been demonstrated that soybean (Glycine max) produces lower yields at relay intercropping with wheat (Triticum aestivum) than if it is sown as a sole crop. However, most studies considered wider or irregular soybean row spacing, compromising its capacity to recover after wheat harvest. This work studied the stress effects in relay soybean intercropping and suggests narrowing row spacing to improve soybean performance. The aims were (i) to compare growth and yield of two planting patterns and (ii) to separate the effect of water stress (WS) from the effects of other stress factors (OSF) induced by wheat on intercropping soybean. WS was evaluated comparing above-ground dry and grain yield of irrigated and non irrigated intercropping soybean, and OSF was evaluated comparing intercropping soybean with another treatment in which wheat straw (aerial biomass) was eliminated at soybean emergence, both irrigated treatments. In wheat, similar yields were obtained in treatments with an intercropping planting pattern with two rows for wheat and one for soybean (2:1) compared to three rows for wheat and one row for soybean (3:1). However, intercropping soybean at narrow row spacing (52 cm; 2:1) improve yielded 23% more than intercropping at 70 cm (3:1). During wheat-soybean coexistence, OSF prevailed on soybean and this effect persisted in later stages. After wheat harvest, OSF reduced the amount of light interception from R1 to R5 and depressed the crop growth rate (CGR) in 34%. However, in this period, WS also affected the radiation use efficiencies (RUE) which explained the greater fraction (66%) of the total stress induced by wheat in soybean CGR. Intercrop soybean yielded 182 g m-2 less compared to the unstressed sole crop control. Considering the wheat effects on soybean growth, 63% (116.5 g m-2) of the total yield lost were due to WS. Therefore, most of the performance of relay intercropping soybean was linked with water disponibility since early stages. However, at optimum water condition wheat competition by light and resources also affected soybean yield (OSF: 37%).EEA BarrowFil: Ross, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Barrow; ArgentinaFil: Abbate, Pablo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaKhalsa Publications, India2020-03-13T12:59:28Z2020-03-13T12:59:28Z2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/6939https://www.rajpub.com/index.php/jaa/article/view/79062349-0837https://doi.org/10.24297/jaa.v9i0.7906Journal of Advances In Agriculture 9 : 1498-1510. (2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:29:46Zoai:localhost:20.500.12123/6939instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:29:46.729INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Effects on soybean growth and yield of wheat-soybean intercropping system
title Effects on soybean growth and yield of wheat-soybean intercropping system
spellingShingle Effects on soybean growth and yield of wheat-soybean intercropping system
Ross, Fernando
Soja
Crecimiento
Cultivo Intercalado
Trigo
Rendimiento
Soybeans
Growth
Intercropping
Wheat
Yields
cientifico
title_short Effects on soybean growth and yield of wheat-soybean intercropping system
title_full Effects on soybean growth and yield of wheat-soybean intercropping system
title_fullStr Effects on soybean growth and yield of wheat-soybean intercropping system
title_full_unstemmed Effects on soybean growth and yield of wheat-soybean intercropping system
title_sort Effects on soybean growth and yield of wheat-soybean intercropping system
dc.creator.none.fl_str_mv Ross, Fernando
Abbate, Pablo Eduardo
author Ross, Fernando
author_facet Ross, Fernando
Abbate, Pablo Eduardo
author_role author
author2 Abbate, Pablo Eduardo
author2_role author
dc.subject.none.fl_str_mv Soja
Crecimiento
Cultivo Intercalado
Trigo
Rendimiento
Soybeans
Growth
Intercropping
Wheat
Yields
cientifico
topic Soja
Crecimiento
Cultivo Intercalado
Trigo
Rendimiento
Soybeans
Growth
Intercropping
Wheat
Yields
cientifico
dc.description.none.fl_txt_mv It has been demonstrated that soybean (Glycine max) produces lower yields at relay intercropping with wheat (Triticum aestivum) than if it is sown as a sole crop. However, most studies considered wider or irregular soybean row spacing, compromising its capacity to recover after wheat harvest. This work studied the stress effects in relay soybean intercropping and suggests narrowing row spacing to improve soybean performance. The aims were (i) to compare growth and yield of two planting patterns and (ii) to separate the effect of water stress (WS) from the effects of other stress factors (OSF) induced by wheat on intercropping soybean. WS was evaluated comparing above-ground dry and grain yield of irrigated and non irrigated intercropping soybean, and OSF was evaluated comparing intercropping soybean with another treatment in which wheat straw (aerial biomass) was eliminated at soybean emergence, both irrigated treatments. In wheat, similar yields were obtained in treatments with an intercropping planting pattern with two rows for wheat and one for soybean (2:1) compared to three rows for wheat and one row for soybean (3:1). However, intercropping soybean at narrow row spacing (52 cm; 2:1) improve yielded 23% more than intercropping at 70 cm (3:1). During wheat-soybean coexistence, OSF prevailed on soybean and this effect persisted in later stages. After wheat harvest, OSF reduced the amount of light interception from R1 to R5 and depressed the crop growth rate (CGR) in 34%. However, in this period, WS also affected the radiation use efficiencies (RUE) which explained the greater fraction (66%) of the total stress induced by wheat in soybean CGR. Intercrop soybean yielded 182 g m-2 less compared to the unstressed sole crop control. Considering the wheat effects on soybean growth, 63% (116.5 g m-2) of the total yield lost were due to WS. Therefore, most of the performance of relay intercropping soybean was linked with water disponibility since early stages. However, at optimum water condition wheat competition by light and resources also affected soybean yield (OSF: 37%).
EEA Barrow
Fil: Ross, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Barrow; Argentina
Fil: Abbate, Pablo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
description It has been demonstrated that soybean (Glycine max) produces lower yields at relay intercropping with wheat (Triticum aestivum) than if it is sown as a sole crop. However, most studies considered wider or irregular soybean row spacing, compromising its capacity to recover after wheat harvest. This work studied the stress effects in relay soybean intercropping and suggests narrowing row spacing to improve soybean performance. The aims were (i) to compare growth and yield of two planting patterns and (ii) to separate the effect of water stress (WS) from the effects of other stress factors (OSF) induced by wheat on intercropping soybean. WS was evaluated comparing above-ground dry and grain yield of irrigated and non irrigated intercropping soybean, and OSF was evaluated comparing intercropping soybean with another treatment in which wheat straw (aerial biomass) was eliminated at soybean emergence, both irrigated treatments. In wheat, similar yields were obtained in treatments with an intercropping planting pattern with two rows for wheat and one for soybean (2:1) compared to three rows for wheat and one row for soybean (3:1). However, intercropping soybean at narrow row spacing (52 cm; 2:1) improve yielded 23% more than intercropping at 70 cm (3:1). During wheat-soybean coexistence, OSF prevailed on soybean and this effect persisted in later stages. After wheat harvest, OSF reduced the amount of light interception from R1 to R5 and depressed the crop growth rate (CGR) in 34%. However, in this period, WS also affected the radiation use efficiencies (RUE) which explained the greater fraction (66%) of the total stress induced by wheat in soybean CGR. Intercrop soybean yielded 182 g m-2 less compared to the unstressed sole crop control. Considering the wheat effects on soybean growth, 63% (116.5 g m-2) of the total yield lost were due to WS. Therefore, most of the performance of relay intercropping soybean was linked with water disponibility since early stages. However, at optimum water condition wheat competition by light and resources also affected soybean yield (OSF: 37%).
publishDate 2018
dc.date.none.fl_str_mv 2018
2020-03-13T12:59:28Z
2020-03-13T12:59:28Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/6939
https://www.rajpub.com/index.php/jaa/article/view/7906
2349-0837
https://doi.org/10.24297/jaa.v9i0.7906
url http://hdl.handle.net/20.500.12123/6939
https://www.rajpub.com/index.php/jaa/article/view/7906
https://doi.org/10.24297/jaa.v9i0.7906
identifier_str_mv 2349-0837
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Khalsa Publications, India
publisher.none.fl_str_mv Khalsa Publications, India
dc.source.none.fl_str_mv Journal of Advances In Agriculture 9 : 1498-1510. (2018)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143523555901440
score 12.712165