Argentina: Soil Organic Carbon Sequestration Potential National Map. National Report. Version 1.0. Year: 2021

Autores
Frolla, Franco Daniel; Angelini, Marcos Esteban; Peralta, Guillermo Ezequiel; Di Paolo, Luciano Elias; Rodriguez, Dario Martin; Schulz, Guillermo; Pascale Medina, Carla; Beltran, Marcelo Javier
Año de publicación
2021
Idioma
inglés
Tipo de recurso
informe técnico
Estado
versión publicada
Descripción
Soil organic carbon (SOC) is a key factor affecting soil physical fertility, as it improves several soil properties such as infiltration, structural stability, porosity, aeration and structure. It also improves soil chemical fertility since C is part of the soil organic matter, which constitutes the main reservoir of nutrients for crops (nitrogen, sulfur, zinc, among others). SOC is positively correlated with soil microbial biomass that acts on nutrient cycling and metabolization processes of toxic molecules. The total SOC stock in topsoil (0-30cm) is about 19.7 Pg C (FAO-ITPS GSOC map, 2018). Thus, due to the size of the soil carbon pool, even small increments in the net soil C storage may represent a substantial C sink potential. Although agricultural greenhouse gas emissions (GHGs) contribute to an important share of Argentina GHG emissions (135.53 MtCO2eq, 37% of total country GHG emissions; SAyDS, 2019), increasing ASOC stocks through judicious land use and sustainable soil management (SSM) practices may represent an important strategy to reduce and mitigate GHG emissions. In Argentina, the total productive area is about 157 million hectares (INDEC, 2021). Agricultural área (croplands) is about 40 (forty) million hectares, predominantly under no tillage system (91% agricultural area; AAPRESID, 2020). Soybean is the main product (45 million tons in 17 million hectares), followed by corn (44 million tons in 6.3 million hectares), wheat (17 million tons in 6.5 million hectares), barley (4.1 million tons in 0.1 million hectares) and sunflower (2.7 million tons in 1.3 million hectares).The rest of the area (over 124 Million hectares) is occupied with grasslands and shrublands dedicated to livestock production, and other agricultural uses. In the last decade’s agricultural land increased and SOC content decayed. This process of land use change was explained by increasing soybean monoculture and displacing livestock area, reducing SOC content (Lavado & Taboada, 2009). There has been an intense expansion of agriculture at the expense of grasslands, native forests and other natural resources in semiarid, sub-humid and subtropical regions of the country (Volante et al., 2012). Currently, soils of the Chaco-Pampean region exhibit SOC levels between 40-70% of the contents of virgin soils (Alvarez & Steinbach, 2009; Sainz Rozas et al., 2011; Milesi Delaye et al., 2013). Several farming practices may be used to restore or diminish the SOC loss, reduce soil erosion, sequester atmospheric carbon dioxide (CO2 ) and improve the soil quality (Poffenbarger et al., 2020). Among these practices, the inclusion of cover crops (CC) during winter has been postulated as one of the most promising activities (Ruis & Blanco-Canqui, 2017). The inclusion of CC showed average SOC sequestration rates of 0.45 tC/ha/yr (± 0.03), in Argentina (Alvarez et al., 2017; Beltran et al., 2018; Romaniuk et al., 2018). Increasing nutrient availability, crop growth and residue returns by increasing fertilizer use showed an increment of SOC around 0.18 tC/ha/yr (± 0.03) (Duval et al., 2020; Restovich et al., 2019). The inclusion of cycles with perennial pastures in crop rotations showed average SOC sequestration rates of 0.76 tC/ha/yr (± 0.03), exhibiting the greatest potential to increase SOC stocks (Costantini et al., 2016; Gil et al., 2016). Sustainable soil management (SSM) practices (FAO, 2020) such as the above mentioned practices have demonstrated potential to increase SOC stocks in different agricultural systems in Argentina, and thus sequester atmospheric CO2 as SOC to mitigate GHG emissions. However, SOC sequestration from these practices show highly variable sequestration rates, depending on edapho-climatic conditions, land use and management, among other factors. It is therefore relevant to identify which regions, soils, climates and systems have a greater potential to increase SOC stocks, in order to establish priorities for research and implementation of private and public policies. In this Soil organic carbon (SOC) is a key factor affecting soil physical fertility, as it improves several soil properties such as infiltration, structural stability, porosity, aeration and structure. It also improves soil chemical fertility since C is part of the soil organic matter, which constitutes the main reservoir of nutrients for crops (nitrogen, sulfur, zinc, among others). SOC is positively correlated with soil microbial biomass that acts on nutrient cycling and metabolization processes of toxic molecules. The total SOC stock in topsoil (0-30cm) is about 19.7 Pg C (FAO-ITPS GSOC map, 2018). Thus, due to the size of the soil carbon pool, even small increments in the net soil C storage may represent a substantial C sink potential. Although agricultural greenhouse gas emissions (GHGs) contribute to an important share of Argentina GHG emissions (135.53 MtCO2eq, 37% of total country GHG emissions; SAyDS, 2019), increasing ASOC stocks through judicious land use and sustainable soil management (SSM) practices may represent an important strategy to reduce and mitigate GHG emissions. In Argentina, the total productive area is about 157 million hectares (INDEC, 2021). Agricultural área (croplands) is about 40 (forty) million hectares, predominantly under no tillage system (91% agricultural area; AAPRESID, 2020). Soybean is the main product (45 million tons in 17 million hectares), followed by corn (44 million tons in 6.3 million hectares), wheat (17 million tons in 6.5 million hectares), barley (4.1 million tons in 0.1 million hectares) and sunflower (2.7 million tons in 1.3 million hectares).The rest of the area (over 124 Million hectares) is occupied with grasslands and shrublands dedicated to livestock production, and other agricultural uses. In the last decade’s agricultural land increased and SOC content decayed. This process of land use change was explained by increasing soybean monoculture and displacing livestock area, reducing SOC content (Lavado & Taboada, 2009). There has been an intense expansion of agriculture at the expense of grasslands, native forests and other natural resources in semiarid, sub-humid and subtropical regions of the country (Volante et al., 2012). Currently, soils of the Chaco-Pampean region exhibit SOC levels between 40-70% of the contents of virgin soils (Alvarez & Steinbach, 2009; Sainz Rozas et al., 2011; Milesi Delaye et al., 2013). Several farming practices may be used to restore or diminish the SOC loss, reduce soil erosion, sequester atmospheric carbon dioxide (CO2) and improve the soil quality (Poffenbarger et al., 2020). Among these practices, the inclusion of cover crops (CC) during winter has been postulated as one of the most promising activities (Ruis & Blanco-Canqui, 2017). The inclusion of CC showed average SOC sequestration rates of 0.45 tC/ha/yr (± 0.03), in Argentina (Alvarez et al., 2017; Beltran et al., 2018; Romaniuk et al., 2018). Increasing nutrient availability, crop growth and residue returns by increasing fertilizer use showed an increment of SOC around 0.18 tC/ha/yr (± 0.03) (Duval et al., 2020; Restovich et al., 2019). The inclusion of cycles with perennial pastures in crop rotations showed average SOC sequestration rates of 0.76 tC/ha/yr (± 0.03), exhibiting the greatest potential to increase SOC stocks (Costantini et al., 2016; Gil et al., 2016). Sustainable soil management (SSM) practices (FAO, 2020) such as the above mentioned practices have demonstrated potential to increase SOC stocks in different agricultural systems in Argentina, and thus sequester atmospheric CO2 as SOC to mitigate GHG emissions. However, SOC sequestration from these practices show highly variable sequestration rates, depending on edapho-climatic conditions, land use and management, among other factors. It is therefore relevant to identify which regions, soils, climates and systems have a greater potential to increase SOC stocks, in order to establish priorities for research and implementation of private and public policies.
Fil: Frolla, Franco Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Angelini, Marcos Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Wageningen University. Soil Geography and Landscape group; Holanda. International Soil Reference and Information Centre. World Soil Information; Holanda
Fil: Beltran, Marcelo Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Peralta, Guillermo Ezequiel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Di Paolo, Luciano E. Global Soil Partnership Secretariat - FAO; Italia
Fil: Rodriguez, Dario Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Schulz, Guillermo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Pascale Medina, Carla. Food and Agriculture Organization (FAO). Alianza Sudamericana de Suelos; Argentina
Fuente
Global Soil Organic Carbon Secuestration Potential Map - GSOCseq. FAO.
Materia
Argentina
Carbono Orgánico del Suelo
Soil Organic Carbon
Carbon
Carbono
Sequestration Potential
Potencial de Secuestro
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/9830

id INTADig_25c3054f414b7a230fa3b69b59c1af35
oai_identifier_str oai:localhost:20.500.12123/9830
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Argentina: Soil Organic Carbon Sequestration Potential National Map. National Report. Version 1.0. Year: 2021Frolla, Franco DanielAngelini, Marcos EstebanPeralta, Guillermo EzequielDi Paolo, Luciano EliasRodriguez, Dario MartinSchulz, GuillermoPascale Medina, CarlaBeltran, Marcelo JavierArgentinaCarbono Orgánico del SueloSoil Organic CarbonCarbonCarbonoSequestration PotentialPotencial de SecuestroSoil organic carbon (SOC) is a key factor affecting soil physical fertility, as it improves several soil properties such as infiltration, structural stability, porosity, aeration and structure. It also improves soil chemical fertility since C is part of the soil organic matter, which constitutes the main reservoir of nutrients for crops (nitrogen, sulfur, zinc, among others). SOC is positively correlated with soil microbial biomass that acts on nutrient cycling and metabolization processes of toxic molecules. The total SOC stock in topsoil (0-30cm) is about 19.7 Pg C (FAO-ITPS GSOC map, 2018). Thus, due to the size of the soil carbon pool, even small increments in the net soil C storage may represent a substantial C sink potential. Although agricultural greenhouse gas emissions (GHGs) contribute to an important share of Argentina GHG emissions (135.53 MtCO2eq, 37% of total country GHG emissions; SAyDS, 2019), increasing ASOC stocks through judicious land use and sustainable soil management (SSM) practices may represent an important strategy to reduce and mitigate GHG emissions. In Argentina, the total productive area is about 157 million hectares (INDEC, 2021). Agricultural área (croplands) is about 40 (forty) million hectares, predominantly under no tillage system (91% agricultural area; AAPRESID, 2020). Soybean is the main product (45 million tons in 17 million hectares), followed by corn (44 million tons in 6.3 million hectares), wheat (17 million tons in 6.5 million hectares), barley (4.1 million tons in 0.1 million hectares) and sunflower (2.7 million tons in 1.3 million hectares).The rest of the area (over 124 Million hectares) is occupied with grasslands and shrublands dedicated to livestock production, and other agricultural uses. In the last decade’s agricultural land increased and SOC content decayed. This process of land use change was explained by increasing soybean monoculture and displacing livestock area, reducing SOC content (Lavado & Taboada, 2009). There has been an intense expansion of agriculture at the expense of grasslands, native forests and other natural resources in semiarid, sub-humid and subtropical regions of the country (Volante et al., 2012). Currently, soils of the Chaco-Pampean region exhibit SOC levels between 40-70% of the contents of virgin soils (Alvarez & Steinbach, 2009; Sainz Rozas et al., 2011; Milesi Delaye et al., 2013). Several farming practices may be used to restore or diminish the SOC loss, reduce soil erosion, sequester atmospheric carbon dioxide (CO2 ) and improve the soil quality (Poffenbarger et al., 2020). Among these practices, the inclusion of cover crops (CC) during winter has been postulated as one of the most promising activities (Ruis & Blanco-Canqui, 2017). The inclusion of CC showed average SOC sequestration rates of 0.45 tC/ha/yr (± 0.03), in Argentina (Alvarez et al., 2017; Beltran et al., 2018; Romaniuk et al., 2018). Increasing nutrient availability, crop growth and residue returns by increasing fertilizer use showed an increment of SOC around 0.18 tC/ha/yr (± 0.03) (Duval et al., 2020; Restovich et al., 2019). The inclusion of cycles with perennial pastures in crop rotations showed average SOC sequestration rates of 0.76 tC/ha/yr (± 0.03), exhibiting the greatest potential to increase SOC stocks (Costantini et al., 2016; Gil et al., 2016). Sustainable soil management (SSM) practices (FAO, 2020) such as the above mentioned practices have demonstrated potential to increase SOC stocks in different agricultural systems in Argentina, and thus sequester atmospheric CO2 as SOC to mitigate GHG emissions. However, SOC sequestration from these practices show highly variable sequestration rates, depending on edapho-climatic conditions, land use and management, among other factors. It is therefore relevant to identify which regions, soils, climates and systems have a greater potential to increase SOC stocks, in order to establish priorities for research and implementation of private and public policies. In this Soil organic carbon (SOC) is a key factor affecting soil physical fertility, as it improves several soil properties such as infiltration, structural stability, porosity, aeration and structure. It also improves soil chemical fertility since C is part of the soil organic matter, which constitutes the main reservoir of nutrients for crops (nitrogen, sulfur, zinc, among others). SOC is positively correlated with soil microbial biomass that acts on nutrient cycling and metabolization processes of toxic molecules. The total SOC stock in topsoil (0-30cm) is about 19.7 Pg C (FAO-ITPS GSOC map, 2018). Thus, due to the size of the soil carbon pool, even small increments in the net soil C storage may represent a substantial C sink potential. Although agricultural greenhouse gas emissions (GHGs) contribute to an important share of Argentina GHG emissions (135.53 MtCO2eq, 37% of total country GHG emissions; SAyDS, 2019), increasing ASOC stocks through judicious land use and sustainable soil management (SSM) practices may represent an important strategy to reduce and mitigate GHG emissions. In Argentina, the total productive area is about 157 million hectares (INDEC, 2021). Agricultural área (croplands) is about 40 (forty) million hectares, predominantly under no tillage system (91% agricultural area; AAPRESID, 2020). Soybean is the main product (45 million tons in 17 million hectares), followed by corn (44 million tons in 6.3 million hectares), wheat (17 million tons in 6.5 million hectares), barley (4.1 million tons in 0.1 million hectares) and sunflower (2.7 million tons in 1.3 million hectares).The rest of the area (over 124 Million hectares) is occupied with grasslands and shrublands dedicated to livestock production, and other agricultural uses. In the last decade’s agricultural land increased and SOC content decayed. This process of land use change was explained by increasing soybean monoculture and displacing livestock area, reducing SOC content (Lavado & Taboada, 2009). There has been an intense expansion of agriculture at the expense of grasslands, native forests and other natural resources in semiarid, sub-humid and subtropical regions of the country (Volante et al., 2012). Currently, soils of the Chaco-Pampean region exhibit SOC levels between 40-70% of the contents of virgin soils (Alvarez & Steinbach, 2009; Sainz Rozas et al., 2011; Milesi Delaye et al., 2013). Several farming practices may be used to restore or diminish the SOC loss, reduce soil erosion, sequester atmospheric carbon dioxide (CO2) and improve the soil quality (Poffenbarger et al., 2020). Among these practices, the inclusion of cover crops (CC) during winter has been postulated as one of the most promising activities (Ruis & Blanco-Canqui, 2017). The inclusion of CC showed average SOC sequestration rates of 0.45 tC/ha/yr (± 0.03), in Argentina (Alvarez et al., 2017; Beltran et al., 2018; Romaniuk et al., 2018). Increasing nutrient availability, crop growth and residue returns by increasing fertilizer use showed an increment of SOC around 0.18 tC/ha/yr (± 0.03) (Duval et al., 2020; Restovich et al., 2019). The inclusion of cycles with perennial pastures in crop rotations showed average SOC sequestration rates of 0.76 tC/ha/yr (± 0.03), exhibiting the greatest potential to increase SOC stocks (Costantini et al., 2016; Gil et al., 2016). Sustainable soil management (SSM) practices (FAO, 2020) such as the above mentioned practices have demonstrated potential to increase SOC stocks in different agricultural systems in Argentina, and thus sequester atmospheric CO2 as SOC to mitigate GHG emissions. However, SOC sequestration from these practices show highly variable sequestration rates, depending on edapho-climatic conditions, land use and management, among other factors. It is therefore relevant to identify which regions, soils, climates and systems have a greater potential to increase SOC stocks, in order to establish priorities for research and implementation of private and public policies.Fil: Frolla, Franco Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; ArgentinaFil: Angelini, Marcos Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Wageningen University. Soil Geography and Landscape group; Holanda. International Soil Reference and Information Centre. World Soil Information; HolandaFil: Beltran, Marcelo Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Peralta, Guillermo Ezequiel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Di Paolo, Luciano E. Global Soil Partnership Secretariat - FAO; ItaliaFil: Rodriguez, Dario Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Schulz, Guillermo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Pascale Medina, Carla. Food and Agriculture Organization (FAO). Alianza Sudamericana de Suelos; ArgentinaFAO.2021-07-16T13:23:52Z2021-07-16T13:23:52Z2021-06-22info:eu-repo/semantics/reportinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_18ghinfo:ar-repo/semantics/informeTecnicoapplication/pdfhttp://hdl.handle.net/20.500.12123/9830http://www.fao.org/fileadmin/user_upload/GSP/GSOCseq/Argentina_SOC_SequestrationPotentialNationalMap.pdfGlobal Soil Organic Carbon Secuestration Potential Map - GSOCseq. FAO.reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:48:58Zoai:localhost:20.500.12123/9830instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:48:59.234INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Argentina: Soil Organic Carbon Sequestration Potential National Map. National Report. Version 1.0. Year: 2021
title Argentina: Soil Organic Carbon Sequestration Potential National Map. National Report. Version 1.0. Year: 2021
spellingShingle Argentina: Soil Organic Carbon Sequestration Potential National Map. National Report. Version 1.0. Year: 2021
Frolla, Franco Daniel
Argentina
Carbono Orgánico del Suelo
Soil Organic Carbon
Carbon
Carbono
Sequestration Potential
Potencial de Secuestro
title_short Argentina: Soil Organic Carbon Sequestration Potential National Map. National Report. Version 1.0. Year: 2021
title_full Argentina: Soil Organic Carbon Sequestration Potential National Map. National Report. Version 1.0. Year: 2021
title_fullStr Argentina: Soil Organic Carbon Sequestration Potential National Map. National Report. Version 1.0. Year: 2021
title_full_unstemmed Argentina: Soil Organic Carbon Sequestration Potential National Map. National Report. Version 1.0. Year: 2021
title_sort Argentina: Soil Organic Carbon Sequestration Potential National Map. National Report. Version 1.0. Year: 2021
dc.creator.none.fl_str_mv Frolla, Franco Daniel
Angelini, Marcos Esteban
Peralta, Guillermo Ezequiel
Di Paolo, Luciano Elias
Rodriguez, Dario Martin
Schulz, Guillermo
Pascale Medina, Carla
Beltran, Marcelo Javier
author Frolla, Franco Daniel
author_facet Frolla, Franco Daniel
Angelini, Marcos Esteban
Peralta, Guillermo Ezequiel
Di Paolo, Luciano Elias
Rodriguez, Dario Martin
Schulz, Guillermo
Pascale Medina, Carla
Beltran, Marcelo Javier
author_role author
author2 Angelini, Marcos Esteban
Peralta, Guillermo Ezequiel
Di Paolo, Luciano Elias
Rodriguez, Dario Martin
Schulz, Guillermo
Pascale Medina, Carla
Beltran, Marcelo Javier
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Argentina
Carbono Orgánico del Suelo
Soil Organic Carbon
Carbon
Carbono
Sequestration Potential
Potencial de Secuestro
topic Argentina
Carbono Orgánico del Suelo
Soil Organic Carbon
Carbon
Carbono
Sequestration Potential
Potencial de Secuestro
dc.description.none.fl_txt_mv Soil organic carbon (SOC) is a key factor affecting soil physical fertility, as it improves several soil properties such as infiltration, structural stability, porosity, aeration and structure. It also improves soil chemical fertility since C is part of the soil organic matter, which constitutes the main reservoir of nutrients for crops (nitrogen, sulfur, zinc, among others). SOC is positively correlated with soil microbial biomass that acts on nutrient cycling and metabolization processes of toxic molecules. The total SOC stock in topsoil (0-30cm) is about 19.7 Pg C (FAO-ITPS GSOC map, 2018). Thus, due to the size of the soil carbon pool, even small increments in the net soil C storage may represent a substantial C sink potential. Although agricultural greenhouse gas emissions (GHGs) contribute to an important share of Argentina GHG emissions (135.53 MtCO2eq, 37% of total country GHG emissions; SAyDS, 2019), increasing ASOC stocks through judicious land use and sustainable soil management (SSM) practices may represent an important strategy to reduce and mitigate GHG emissions. In Argentina, the total productive area is about 157 million hectares (INDEC, 2021). Agricultural área (croplands) is about 40 (forty) million hectares, predominantly under no tillage system (91% agricultural area; AAPRESID, 2020). Soybean is the main product (45 million tons in 17 million hectares), followed by corn (44 million tons in 6.3 million hectares), wheat (17 million tons in 6.5 million hectares), barley (4.1 million tons in 0.1 million hectares) and sunflower (2.7 million tons in 1.3 million hectares).The rest of the area (over 124 Million hectares) is occupied with grasslands and shrublands dedicated to livestock production, and other agricultural uses. In the last decade’s agricultural land increased and SOC content decayed. This process of land use change was explained by increasing soybean monoculture and displacing livestock area, reducing SOC content (Lavado & Taboada, 2009). There has been an intense expansion of agriculture at the expense of grasslands, native forests and other natural resources in semiarid, sub-humid and subtropical regions of the country (Volante et al., 2012). Currently, soils of the Chaco-Pampean region exhibit SOC levels between 40-70% of the contents of virgin soils (Alvarez & Steinbach, 2009; Sainz Rozas et al., 2011; Milesi Delaye et al., 2013). Several farming practices may be used to restore or diminish the SOC loss, reduce soil erosion, sequester atmospheric carbon dioxide (CO2 ) and improve the soil quality (Poffenbarger et al., 2020). Among these practices, the inclusion of cover crops (CC) during winter has been postulated as one of the most promising activities (Ruis & Blanco-Canqui, 2017). The inclusion of CC showed average SOC sequestration rates of 0.45 tC/ha/yr (± 0.03), in Argentina (Alvarez et al., 2017; Beltran et al., 2018; Romaniuk et al., 2018). Increasing nutrient availability, crop growth and residue returns by increasing fertilizer use showed an increment of SOC around 0.18 tC/ha/yr (± 0.03) (Duval et al., 2020; Restovich et al., 2019). The inclusion of cycles with perennial pastures in crop rotations showed average SOC sequestration rates of 0.76 tC/ha/yr (± 0.03), exhibiting the greatest potential to increase SOC stocks (Costantini et al., 2016; Gil et al., 2016). Sustainable soil management (SSM) practices (FAO, 2020) such as the above mentioned practices have demonstrated potential to increase SOC stocks in different agricultural systems in Argentina, and thus sequester atmospheric CO2 as SOC to mitigate GHG emissions. However, SOC sequestration from these practices show highly variable sequestration rates, depending on edapho-climatic conditions, land use and management, among other factors. It is therefore relevant to identify which regions, soils, climates and systems have a greater potential to increase SOC stocks, in order to establish priorities for research and implementation of private and public policies. In this Soil organic carbon (SOC) is a key factor affecting soil physical fertility, as it improves several soil properties such as infiltration, structural stability, porosity, aeration and structure. It also improves soil chemical fertility since C is part of the soil organic matter, which constitutes the main reservoir of nutrients for crops (nitrogen, sulfur, zinc, among others). SOC is positively correlated with soil microbial biomass that acts on nutrient cycling and metabolization processes of toxic molecules. The total SOC stock in topsoil (0-30cm) is about 19.7 Pg C (FAO-ITPS GSOC map, 2018). Thus, due to the size of the soil carbon pool, even small increments in the net soil C storage may represent a substantial C sink potential. Although agricultural greenhouse gas emissions (GHGs) contribute to an important share of Argentina GHG emissions (135.53 MtCO2eq, 37% of total country GHG emissions; SAyDS, 2019), increasing ASOC stocks through judicious land use and sustainable soil management (SSM) practices may represent an important strategy to reduce and mitigate GHG emissions. In Argentina, the total productive area is about 157 million hectares (INDEC, 2021). Agricultural área (croplands) is about 40 (forty) million hectares, predominantly under no tillage system (91% agricultural area; AAPRESID, 2020). Soybean is the main product (45 million tons in 17 million hectares), followed by corn (44 million tons in 6.3 million hectares), wheat (17 million tons in 6.5 million hectares), barley (4.1 million tons in 0.1 million hectares) and sunflower (2.7 million tons in 1.3 million hectares).The rest of the area (over 124 Million hectares) is occupied with grasslands and shrublands dedicated to livestock production, and other agricultural uses. In the last decade’s agricultural land increased and SOC content decayed. This process of land use change was explained by increasing soybean monoculture and displacing livestock area, reducing SOC content (Lavado & Taboada, 2009). There has been an intense expansion of agriculture at the expense of grasslands, native forests and other natural resources in semiarid, sub-humid and subtropical regions of the country (Volante et al., 2012). Currently, soils of the Chaco-Pampean region exhibit SOC levels between 40-70% of the contents of virgin soils (Alvarez & Steinbach, 2009; Sainz Rozas et al., 2011; Milesi Delaye et al., 2013). Several farming practices may be used to restore or diminish the SOC loss, reduce soil erosion, sequester atmospheric carbon dioxide (CO2) and improve the soil quality (Poffenbarger et al., 2020). Among these practices, the inclusion of cover crops (CC) during winter has been postulated as one of the most promising activities (Ruis & Blanco-Canqui, 2017). The inclusion of CC showed average SOC sequestration rates of 0.45 tC/ha/yr (± 0.03), in Argentina (Alvarez et al., 2017; Beltran et al., 2018; Romaniuk et al., 2018). Increasing nutrient availability, crop growth and residue returns by increasing fertilizer use showed an increment of SOC around 0.18 tC/ha/yr (± 0.03) (Duval et al., 2020; Restovich et al., 2019). The inclusion of cycles with perennial pastures in crop rotations showed average SOC sequestration rates of 0.76 tC/ha/yr (± 0.03), exhibiting the greatest potential to increase SOC stocks (Costantini et al., 2016; Gil et al., 2016). Sustainable soil management (SSM) practices (FAO, 2020) such as the above mentioned practices have demonstrated potential to increase SOC stocks in different agricultural systems in Argentina, and thus sequester atmospheric CO2 as SOC to mitigate GHG emissions. However, SOC sequestration from these practices show highly variable sequestration rates, depending on edapho-climatic conditions, land use and management, among other factors. It is therefore relevant to identify which regions, soils, climates and systems have a greater potential to increase SOC stocks, in order to establish priorities for research and implementation of private and public policies.
Fil: Frolla, Franco Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Angelini, Marcos Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Wageningen University. Soil Geography and Landscape group; Holanda. International Soil Reference and Information Centre. World Soil Information; Holanda
Fil: Beltran, Marcelo Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Peralta, Guillermo Ezequiel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Di Paolo, Luciano E. Global Soil Partnership Secretariat - FAO; Italia
Fil: Rodriguez, Dario Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Schulz, Guillermo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Pascale Medina, Carla. Food and Agriculture Organization (FAO). Alianza Sudamericana de Suelos; Argentina
description Soil organic carbon (SOC) is a key factor affecting soil physical fertility, as it improves several soil properties such as infiltration, structural stability, porosity, aeration and structure. It also improves soil chemical fertility since C is part of the soil organic matter, which constitutes the main reservoir of nutrients for crops (nitrogen, sulfur, zinc, among others). SOC is positively correlated with soil microbial biomass that acts on nutrient cycling and metabolization processes of toxic molecules. The total SOC stock in topsoil (0-30cm) is about 19.7 Pg C (FAO-ITPS GSOC map, 2018). Thus, due to the size of the soil carbon pool, even small increments in the net soil C storage may represent a substantial C sink potential. Although agricultural greenhouse gas emissions (GHGs) contribute to an important share of Argentina GHG emissions (135.53 MtCO2eq, 37% of total country GHG emissions; SAyDS, 2019), increasing ASOC stocks through judicious land use and sustainable soil management (SSM) practices may represent an important strategy to reduce and mitigate GHG emissions. In Argentina, the total productive area is about 157 million hectares (INDEC, 2021). Agricultural área (croplands) is about 40 (forty) million hectares, predominantly under no tillage system (91% agricultural area; AAPRESID, 2020). Soybean is the main product (45 million tons in 17 million hectares), followed by corn (44 million tons in 6.3 million hectares), wheat (17 million tons in 6.5 million hectares), barley (4.1 million tons in 0.1 million hectares) and sunflower (2.7 million tons in 1.3 million hectares).The rest of the area (over 124 Million hectares) is occupied with grasslands and shrublands dedicated to livestock production, and other agricultural uses. In the last decade’s agricultural land increased and SOC content decayed. This process of land use change was explained by increasing soybean monoculture and displacing livestock area, reducing SOC content (Lavado & Taboada, 2009). There has been an intense expansion of agriculture at the expense of grasslands, native forests and other natural resources in semiarid, sub-humid and subtropical regions of the country (Volante et al., 2012). Currently, soils of the Chaco-Pampean region exhibit SOC levels between 40-70% of the contents of virgin soils (Alvarez & Steinbach, 2009; Sainz Rozas et al., 2011; Milesi Delaye et al., 2013). Several farming practices may be used to restore or diminish the SOC loss, reduce soil erosion, sequester atmospheric carbon dioxide (CO2 ) and improve the soil quality (Poffenbarger et al., 2020). Among these practices, the inclusion of cover crops (CC) during winter has been postulated as one of the most promising activities (Ruis & Blanco-Canqui, 2017). The inclusion of CC showed average SOC sequestration rates of 0.45 tC/ha/yr (± 0.03), in Argentina (Alvarez et al., 2017; Beltran et al., 2018; Romaniuk et al., 2018). Increasing nutrient availability, crop growth and residue returns by increasing fertilizer use showed an increment of SOC around 0.18 tC/ha/yr (± 0.03) (Duval et al., 2020; Restovich et al., 2019). The inclusion of cycles with perennial pastures in crop rotations showed average SOC sequestration rates of 0.76 tC/ha/yr (± 0.03), exhibiting the greatest potential to increase SOC stocks (Costantini et al., 2016; Gil et al., 2016). Sustainable soil management (SSM) practices (FAO, 2020) such as the above mentioned practices have demonstrated potential to increase SOC stocks in different agricultural systems in Argentina, and thus sequester atmospheric CO2 as SOC to mitigate GHG emissions. However, SOC sequestration from these practices show highly variable sequestration rates, depending on edapho-climatic conditions, land use and management, among other factors. It is therefore relevant to identify which regions, soils, climates and systems have a greater potential to increase SOC stocks, in order to establish priorities for research and implementation of private and public policies. In this Soil organic carbon (SOC) is a key factor affecting soil physical fertility, as it improves several soil properties such as infiltration, structural stability, porosity, aeration and structure. It also improves soil chemical fertility since C is part of the soil organic matter, which constitutes the main reservoir of nutrients for crops (nitrogen, sulfur, zinc, among others). SOC is positively correlated with soil microbial biomass that acts on nutrient cycling and metabolization processes of toxic molecules. The total SOC stock in topsoil (0-30cm) is about 19.7 Pg C (FAO-ITPS GSOC map, 2018). Thus, due to the size of the soil carbon pool, even small increments in the net soil C storage may represent a substantial C sink potential. Although agricultural greenhouse gas emissions (GHGs) contribute to an important share of Argentina GHG emissions (135.53 MtCO2eq, 37% of total country GHG emissions; SAyDS, 2019), increasing ASOC stocks through judicious land use and sustainable soil management (SSM) practices may represent an important strategy to reduce and mitigate GHG emissions. In Argentina, the total productive area is about 157 million hectares (INDEC, 2021). Agricultural área (croplands) is about 40 (forty) million hectares, predominantly under no tillage system (91% agricultural area; AAPRESID, 2020). Soybean is the main product (45 million tons in 17 million hectares), followed by corn (44 million tons in 6.3 million hectares), wheat (17 million tons in 6.5 million hectares), barley (4.1 million tons in 0.1 million hectares) and sunflower (2.7 million tons in 1.3 million hectares).The rest of the area (over 124 Million hectares) is occupied with grasslands and shrublands dedicated to livestock production, and other agricultural uses. In the last decade’s agricultural land increased and SOC content decayed. This process of land use change was explained by increasing soybean monoculture and displacing livestock area, reducing SOC content (Lavado & Taboada, 2009). There has been an intense expansion of agriculture at the expense of grasslands, native forests and other natural resources in semiarid, sub-humid and subtropical regions of the country (Volante et al., 2012). Currently, soils of the Chaco-Pampean region exhibit SOC levels between 40-70% of the contents of virgin soils (Alvarez & Steinbach, 2009; Sainz Rozas et al., 2011; Milesi Delaye et al., 2013). Several farming practices may be used to restore or diminish the SOC loss, reduce soil erosion, sequester atmospheric carbon dioxide (CO2) and improve the soil quality (Poffenbarger et al., 2020). Among these practices, the inclusion of cover crops (CC) during winter has been postulated as one of the most promising activities (Ruis & Blanco-Canqui, 2017). The inclusion of CC showed average SOC sequestration rates of 0.45 tC/ha/yr (± 0.03), in Argentina (Alvarez et al., 2017; Beltran et al., 2018; Romaniuk et al., 2018). Increasing nutrient availability, crop growth and residue returns by increasing fertilizer use showed an increment of SOC around 0.18 tC/ha/yr (± 0.03) (Duval et al., 2020; Restovich et al., 2019). The inclusion of cycles with perennial pastures in crop rotations showed average SOC sequestration rates of 0.76 tC/ha/yr (± 0.03), exhibiting the greatest potential to increase SOC stocks (Costantini et al., 2016; Gil et al., 2016). Sustainable soil management (SSM) practices (FAO, 2020) such as the above mentioned practices have demonstrated potential to increase SOC stocks in different agricultural systems in Argentina, and thus sequester atmospheric CO2 as SOC to mitigate GHG emissions. However, SOC sequestration from these practices show highly variable sequestration rates, depending on edapho-climatic conditions, land use and management, among other factors. It is therefore relevant to identify which regions, soils, climates and systems have a greater potential to increase SOC stocks, in order to establish priorities for research and implementation of private and public policies.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-16T13:23:52Z
2021-07-16T13:23:52Z
2021-06-22
dc.type.none.fl_str_mv info:eu-repo/semantics/report
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_18gh
info:ar-repo/semantics/informeTecnico
format report
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/9830
http://www.fao.org/fileadmin/user_upload/GSP/GSOCseq/Argentina_SOC_SequestrationPotentialNationalMap.pdf
url http://hdl.handle.net/20.500.12123/9830
http://www.fao.org/fileadmin/user_upload/GSP/GSOCseq/Argentina_SOC_SequestrationPotentialNationalMap.pdf
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv FAO.
publisher.none.fl_str_mv FAO.
dc.source.none.fl_str_mv Global Soil Organic Carbon Secuestration Potential Map - GSOCseq. FAO.
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341389055033344
score 12.623145