Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant

Autores
Cáceres, Pablo D.; Manacorda, Carlos Augusto; Sutka, Moira; Asurmendi, Sebastian; Amodeo, Gabriela; Baroli, Irene
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Abstract Background and aims: Understanding the coordination between root and shoot hydraulics is fundamental for improving plant performance under water stress. In this study, we investigated how shoot traits that enhance transpiration influence root hydraulic properties, using the Arabidopsis thaliana double mutant epf1 epf2, characterized by high stomatal density and increased transpiration. Methods: Plant lines epf1 epf2 and Col-0 (wild type) were grown hydroponically and compared for stomatal traits, rate of water loss, leaf and root water relations, aquaporin expression, and root hydraulic conductivity (Lpr). Then, to assess responses to water deficit, osmotic stress was induced by adding 2% polyethylene glycol (PEG) to the nutrient solution seven days before measurements. Key results: The epf1 epf2 double mutant exhibited ∼150% higher stomatal density, yet stomatal conductance and short-term rosette water loss increased by only ∼30% relative to wild type. Despite higher water loss, the mutant maintained its leaf relative water content, concomitant with a more negative leaf osmotic potential; root osmotic potential was similar between genotypes. epf1 epf2 showed lower Lpr than Col-0. Aquaporin transcript levels and the relative aquaporin contribution to root water transport did not differ between genotypes. Under osmotic stress, Col-0 instead showed lower Lpr than epf1 epf2, again without changes in aquaporin expression or relative contribution. Conclusions: Our results highlight an active contribution of the root as a modulator of the whole-plant hydraulic balance. Across scenarios where xylem tension was expected to increase, stomatal aperture and Lpr decreased. We suggest that enhanced transpiration elevates xylem tension, which acts as a long-distance cue, eliciting coordinated reductions in stomatal aperture and Lpr, thereby constraining water flux.
Instituto de Biotecnología
Fil: Cáceres, Pablo D. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina
Fil: Cáceres, Pablo D. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Manacorda, Carlos Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Manacorda, Carlos Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Sutka, Moira. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina
Fil: Sutka, Moira. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Asurmendi, Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Asurmendi, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Amodeo, Gabriela. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina
Fil: Amodeo, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Baroli, Irene. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina
Fil: Baroli, Irene. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fuente
BioRxiv : the preprint server for biology (December 17, 2025)
Materia
Root Hydraulic Conductivity
Transpiration
Stomata
Osmotic Stress
Cell Communication
Moisture Content
Conductancia Hidráulica de Raíces
Transpiración
Estoma
Estrés osmótico
Comunicación Celular
Contenido de Humedad
Arabidopsis
Aquaporin
Acuaporina
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/25035

id INTADig_12622e0532b1b3c0ce98679f9ddb6733
oai_identifier_str oai:localhost:20.500.12123/25035
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutantCáceres, Pablo D.Manacorda, Carlos AugustoSutka, MoiraAsurmendi, SebastianAmodeo, GabrielaBaroli, IreneRoot Hydraulic ConductivityTranspirationStomataOsmotic StressCell CommunicationMoisture ContentConductancia Hidráulica de RaícesTranspiraciónEstomaEstrés osmóticoComunicación CelularContenido de HumedadArabidopsisAquaporinAcuaporinaAbstract Background and aims: Understanding the coordination between root and shoot hydraulics is fundamental for improving plant performance under water stress. In this study, we investigated how shoot traits that enhance transpiration influence root hydraulic properties, using the Arabidopsis thaliana double mutant epf1 epf2, characterized by high stomatal density and increased transpiration. Methods: Plant lines epf1 epf2 and Col-0 (wild type) were grown hydroponically and compared for stomatal traits, rate of water loss, leaf and root water relations, aquaporin expression, and root hydraulic conductivity (Lpr). Then, to assess responses to water deficit, osmotic stress was induced by adding 2% polyethylene glycol (PEG) to the nutrient solution seven days before measurements. Key results: The epf1 epf2 double mutant exhibited ∼150% higher stomatal density, yet stomatal conductance and short-term rosette water loss increased by only ∼30% relative to wild type. Despite higher water loss, the mutant maintained its leaf relative water content, concomitant with a more negative leaf osmotic potential; root osmotic potential was similar between genotypes. epf1 epf2 showed lower Lpr than Col-0. Aquaporin transcript levels and the relative aquaporin contribution to root water transport did not differ between genotypes. Under osmotic stress, Col-0 instead showed lower Lpr than epf1 epf2, again without changes in aquaporin expression or relative contribution. Conclusions: Our results highlight an active contribution of the root as a modulator of the whole-plant hydraulic balance. Across scenarios where xylem tension was expected to increase, stomatal aperture and Lpr decreased. We suggest that enhanced transpiration elevates xylem tension, which acts as a long-distance cue, eliciting coordinated reductions in stomatal aperture and Lpr, thereby constraining water flux.Instituto de BiotecnologíaFil: Cáceres, Pablo D. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; ArgentinaFil: Cáceres, Pablo D. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); ArgentinaFil: Manacorda, Carlos Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Manacorda, Carlos Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); ArgentinaFil: Sutka, Moira. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; ArgentinaFil: Sutka, Moira. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); ArgentinaFil: Asurmendi, Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Asurmendi, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); ArgentinaFil: Amodeo, Gabriela. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; ArgentinaFil: Amodeo, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); ArgentinaFil: Baroli, Irene. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; ArgentinaFil: Baroli, Irene. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); ArgentinaBioRxiv2026-01-23T13:12:15Z2026-01-23T13:12:15Z2025-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/25035https://www.biorxiv.org/content/10.64898/2025.12.17.694893v1https://doi.org/10.64898/2025.12.17.694893BioRxiv : the preprint server for biology (December 17, 2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2023-PD-L03-I084, Estreses bióticos y abióticos en plantas. Estudios fisiológicos y patológicos para el diseño de estrategias de mejoramiento y manejoinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2026-02-05T12:54:26Zoai:localhost:20.500.12123/25035instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2026-02-05 12:54:26.575INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
title Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
spellingShingle Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
Cáceres, Pablo D.
Root Hydraulic Conductivity
Transpiration
Stomata
Osmotic Stress
Cell Communication
Moisture Content
Conductancia Hidráulica de Raíces
Transpiración
Estoma
Estrés osmótico
Comunicación Celular
Contenido de Humedad
Arabidopsis
Aquaporin
Acuaporina
title_short Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
title_full Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
title_fullStr Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
title_full_unstemmed Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
title_sort Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
dc.creator.none.fl_str_mv Cáceres, Pablo D.
Manacorda, Carlos Augusto
Sutka, Moira
Asurmendi, Sebastian
Amodeo, Gabriela
Baroli, Irene
author Cáceres, Pablo D.
author_facet Cáceres, Pablo D.
Manacorda, Carlos Augusto
Sutka, Moira
Asurmendi, Sebastian
Amodeo, Gabriela
Baroli, Irene
author_role author
author2 Manacorda, Carlos Augusto
Sutka, Moira
Asurmendi, Sebastian
Amodeo, Gabriela
Baroli, Irene
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Root Hydraulic Conductivity
Transpiration
Stomata
Osmotic Stress
Cell Communication
Moisture Content
Conductancia Hidráulica de Raíces
Transpiración
Estoma
Estrés osmótico
Comunicación Celular
Contenido de Humedad
Arabidopsis
Aquaporin
Acuaporina
topic Root Hydraulic Conductivity
Transpiration
Stomata
Osmotic Stress
Cell Communication
Moisture Content
Conductancia Hidráulica de Raíces
Transpiración
Estoma
Estrés osmótico
Comunicación Celular
Contenido de Humedad
Arabidopsis
Aquaporin
Acuaporina
dc.description.none.fl_txt_mv Abstract Background and aims: Understanding the coordination between root and shoot hydraulics is fundamental for improving plant performance under water stress. In this study, we investigated how shoot traits that enhance transpiration influence root hydraulic properties, using the Arabidopsis thaliana double mutant epf1 epf2, characterized by high stomatal density and increased transpiration. Methods: Plant lines epf1 epf2 and Col-0 (wild type) were grown hydroponically and compared for stomatal traits, rate of water loss, leaf and root water relations, aquaporin expression, and root hydraulic conductivity (Lpr). Then, to assess responses to water deficit, osmotic stress was induced by adding 2% polyethylene glycol (PEG) to the nutrient solution seven days before measurements. Key results: The epf1 epf2 double mutant exhibited ∼150% higher stomatal density, yet stomatal conductance and short-term rosette water loss increased by only ∼30% relative to wild type. Despite higher water loss, the mutant maintained its leaf relative water content, concomitant with a more negative leaf osmotic potential; root osmotic potential was similar between genotypes. epf1 epf2 showed lower Lpr than Col-0. Aquaporin transcript levels and the relative aquaporin contribution to root water transport did not differ between genotypes. Under osmotic stress, Col-0 instead showed lower Lpr than epf1 epf2, again without changes in aquaporin expression or relative contribution. Conclusions: Our results highlight an active contribution of the root as a modulator of the whole-plant hydraulic balance. Across scenarios where xylem tension was expected to increase, stomatal aperture and Lpr decreased. We suggest that enhanced transpiration elevates xylem tension, which acts as a long-distance cue, eliciting coordinated reductions in stomatal aperture and Lpr, thereby constraining water flux.
Instituto de Biotecnología
Fil: Cáceres, Pablo D. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina
Fil: Cáceres, Pablo D. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Manacorda, Carlos Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Manacorda, Carlos Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Sutka, Moira. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina
Fil: Sutka, Moira. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Asurmendi, Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Asurmendi, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Amodeo, Gabriela. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina
Fil: Amodeo, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Baroli, Irene. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina
Fil: Baroli, Irene. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
description Abstract Background and aims: Understanding the coordination between root and shoot hydraulics is fundamental for improving plant performance under water stress. In this study, we investigated how shoot traits that enhance transpiration influence root hydraulic properties, using the Arabidopsis thaliana double mutant epf1 epf2, characterized by high stomatal density and increased transpiration. Methods: Plant lines epf1 epf2 and Col-0 (wild type) were grown hydroponically and compared for stomatal traits, rate of water loss, leaf and root water relations, aquaporin expression, and root hydraulic conductivity (Lpr). Then, to assess responses to water deficit, osmotic stress was induced by adding 2% polyethylene glycol (PEG) to the nutrient solution seven days before measurements. Key results: The epf1 epf2 double mutant exhibited ∼150% higher stomatal density, yet stomatal conductance and short-term rosette water loss increased by only ∼30% relative to wild type. Despite higher water loss, the mutant maintained its leaf relative water content, concomitant with a more negative leaf osmotic potential; root osmotic potential was similar between genotypes. epf1 epf2 showed lower Lpr than Col-0. Aquaporin transcript levels and the relative aquaporin contribution to root water transport did not differ between genotypes. Under osmotic stress, Col-0 instead showed lower Lpr than epf1 epf2, again without changes in aquaporin expression or relative contribution. Conclusions: Our results highlight an active contribution of the root as a modulator of the whole-plant hydraulic balance. Across scenarios where xylem tension was expected to increase, stomatal aperture and Lpr decreased. We suggest that enhanced transpiration elevates xylem tension, which acts as a long-distance cue, eliciting coordinated reductions in stomatal aperture and Lpr, thereby constraining water flux.
publishDate 2025
dc.date.none.fl_str_mv 2025-12
2026-01-23T13:12:15Z
2026-01-23T13:12:15Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/25035
https://www.biorxiv.org/content/10.64898/2025.12.17.694893v1
https://doi.org/10.64898/2025.12.17.694893
url http://hdl.handle.net/20.500.12123/25035
https://www.biorxiv.org/content/10.64898/2025.12.17.694893v1
https://doi.org/10.64898/2025.12.17.694893
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repograntAgreement/INTA/2023-PD-L03-I084, Estreses bióticos y abióticos en plantas. Estudios fisiológicos y patológicos para el diseño de estrategias de mejoramiento y manejo
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv BioRxiv
publisher.none.fl_str_mv BioRxiv
dc.source.none.fl_str_mv BioRxiv : the preprint server for biology (December 17, 2025)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1856302448318087168
score 13.11174