Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina
- Autores
- Alaggia, Francisco Guillermo; Innangi, Michele; Cavallero, Laura; Lopez, Dardo Ruben; Pontieri, Federica; Marzialetti, Flavio; Riera-Tatche, Ramon; Gamba, Paolo; Carranza, María Laura
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Anthropogenic alteration of tropical and subtropical forests is a major driver of biodiversity loss; notably, the Chaco Forest, which is the largest dry forest in the Americas, is among the most impacted regions. Sustainable forest management, a key objective of the UN’s 15th Sustainable Development Goal (SDG), underscores the need for advanced monitoring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of alteration in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of theWest Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using linear mixed models. Spectral indices such as the BI (Brightness Index), NDWIGao (Normalized Difference Water Index), and MCARISent (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco Forest, which face extensive anthropogenic pressures.
EEA Manfredi
Fil: Alaggia, Francisco G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Campo Anexo Villa Dolores; Argentina.
Fil: Innangi. Michele. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia
Fil: Cavallero, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; Argentina
Fil: López, Dardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; Argentina
Fil: Pontieri, Federica. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia
Fil: Marzialetti, Flavio. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; Italia
Fil: Riera-Tatche, Ramon. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; Italia
Fil: Gamba, Paolo. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; Italia
Fil: Carranza, María Laura. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia
Fil: Carranza, María Laura. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; Italia - Fuente
- Remote Sensing 17 (5) : 748 (February 2025)
- Materia
-
Bosque Tropical
Bosque Seco
Clorofila
Tropical Forests
Dry Forests
Chlorophylls
Remote Sensing
Teledetección
Región Gran Chaco, Argentina - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/21492
Ver los metadatos del registro completo
id |
INTADig_11a4351bc179b60e3e564639c2675ed5 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/21492 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central ArgentinaAlaggia, Francisco GuillermoInnangi, MicheleCavallero, LauraLopez, Dardo RubenPontieri, FedericaMarzialetti, FlavioRiera-Tatche, RamonGamba, PaoloCarranza, María LauraBosque TropicalBosque SecoClorofilaTropical ForestsDry ForestsChlorophyllsRemote SensingTeledetecciónRegión Gran Chaco, ArgentinaAnthropogenic alteration of tropical and subtropical forests is a major driver of biodiversity loss; notably, the Chaco Forest, which is the largest dry forest in the Americas, is among the most impacted regions. Sustainable forest management, a key objective of the UN’s 15th Sustainable Development Goal (SDG), underscores the need for advanced monitoring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of alteration in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of theWest Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using linear mixed models. Spectral indices such as the BI (Brightness Index), NDWIGao (Normalized Difference Water Index), and MCARISent (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco Forest, which face extensive anthropogenic pressures.EEA ManfrediFil: Alaggia, Francisco G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Campo Anexo Villa Dolores; Argentina.Fil: Innangi. Michele. University of Molise. Department of Biosciences and Territory. EnviXLab; ItaliaFil: Cavallero, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; ArgentinaFil: López, Dardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; ArgentinaFil: Pontieri, Federica. University of Molise. Department of Biosciences and Territory. EnviXLab; ItaliaFil: Marzialetti, Flavio. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; ItaliaFil: Riera-Tatche, Ramon. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; ItaliaFil: Gamba, Paolo. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; ItaliaFil: Carranza, María Laura. University of Molise. Department of Biosciences and Territory. EnviXLab; ItaliaFil: Carranza, María Laura. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; ItaliaMDPI2025-02-27T12:47:50Z2025-02-27T12:47:50Z2025-02-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/21492https://www.mdpi.com/2072-4292/17/5/7482072-4292https://doi.org/10.3390/rs17050748Remote Sensing 17 (5) : 748 (February 2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2023-PD-L02-I091, Adaptación a la variabilidad y al cambio global: herramientas para la gestión de riesgos, la reducción de impactos y el aumento de la resiliencia de socioecosistemasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:47:10Zoai:localhost:20.500.12123/21492instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:47:10.449INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
title |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
spellingShingle |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina Alaggia, Francisco Guillermo Bosque Tropical Bosque Seco Clorofila Tropical Forests Dry Forests Chlorophylls Remote Sensing Teledetección Región Gran Chaco, Argentina |
title_short |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
title_full |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
title_fullStr |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
title_full_unstemmed |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
title_sort |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
dc.creator.none.fl_str_mv |
Alaggia, Francisco Guillermo Innangi, Michele Cavallero, Laura Lopez, Dardo Ruben Pontieri, Federica Marzialetti, Flavio Riera-Tatche, Ramon Gamba, Paolo Carranza, María Laura |
author |
Alaggia, Francisco Guillermo |
author_facet |
Alaggia, Francisco Guillermo Innangi, Michele Cavallero, Laura Lopez, Dardo Ruben Pontieri, Federica Marzialetti, Flavio Riera-Tatche, Ramon Gamba, Paolo Carranza, María Laura |
author_role |
author |
author2 |
Innangi, Michele Cavallero, Laura Lopez, Dardo Ruben Pontieri, Federica Marzialetti, Flavio Riera-Tatche, Ramon Gamba, Paolo Carranza, María Laura |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Bosque Tropical Bosque Seco Clorofila Tropical Forests Dry Forests Chlorophylls Remote Sensing Teledetección Región Gran Chaco, Argentina |
topic |
Bosque Tropical Bosque Seco Clorofila Tropical Forests Dry Forests Chlorophylls Remote Sensing Teledetección Región Gran Chaco, Argentina |
dc.description.none.fl_txt_mv |
Anthropogenic alteration of tropical and subtropical forests is a major driver of biodiversity loss; notably, the Chaco Forest, which is the largest dry forest in the Americas, is among the most impacted regions. Sustainable forest management, a key objective of the UN’s 15th Sustainable Development Goal (SDG), underscores the need for advanced monitoring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of alteration in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of theWest Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using linear mixed models. Spectral indices such as the BI (Brightness Index), NDWIGao (Normalized Difference Water Index), and MCARISent (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco Forest, which face extensive anthropogenic pressures. EEA Manfredi Fil: Alaggia, Francisco G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Campo Anexo Villa Dolores; Argentina. Fil: Innangi. Michele. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia Fil: Cavallero, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; Argentina Fil: López, Dardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; Argentina Fil: Pontieri, Federica. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia Fil: Marzialetti, Flavio. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; Italia Fil: Riera-Tatche, Ramon. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; Italia Fil: Gamba, Paolo. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; Italia Fil: Carranza, María Laura. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia Fil: Carranza, María Laura. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; Italia |
description |
Anthropogenic alteration of tropical and subtropical forests is a major driver of biodiversity loss; notably, the Chaco Forest, which is the largest dry forest in the Americas, is among the most impacted regions. Sustainable forest management, a key objective of the UN’s 15th Sustainable Development Goal (SDG), underscores the need for advanced monitoring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of alteration in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of theWest Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using linear mixed models. Spectral indices such as the BI (Brightness Index), NDWIGao (Normalized Difference Water Index), and MCARISent (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco Forest, which face extensive anthropogenic pressures. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-02-27T12:47:50Z 2025-02-27T12:47:50Z 2025-02-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/21492 https://www.mdpi.com/2072-4292/17/5/748 2072-4292 https://doi.org/10.3390/rs17050748 |
url |
http://hdl.handle.net/20.500.12123/21492 https://www.mdpi.com/2072-4292/17/5/748 https://doi.org/10.3390/rs17050748 |
identifier_str_mv |
2072-4292 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/2023-PD-L02-I091, Adaptación a la variabilidad y al cambio global: herramientas para la gestión de riesgos, la reducción de impactos y el aumento de la resiliencia de socioecosistemas |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Remote Sensing 17 (5) : 748 (February 2025) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619201176666112 |
score |
12.559606 |