Marriage between variable selection and prediction methods to model plant disease risk
- Autores
- Suarez, Franco; Bruno, Cecilia; Kurina Giannini, Franca; Gimenez, Maria; Rodriguez Pardina, Patricia; Balzarini, Mónica Graciela
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Predicting the risk of a disease in a pathosystem based on a set of climatic variables usually requires handling a high number of input variables, many of which are often irrelevant and/or redundant. Building linear predictive models entails not only dimensionality issues but also the negative impact of multicollinearity. Several feature selection methods have proved to be efficient in both linear and non-linear models, regardless of those issues. However, in a machine learning (ML) context, it is necessary to evaluate these feature selection methods embedded into the model fitting algorithm to obtain the greatest accuracy. The aim of this work was to assess different combinations of variable selection methods with linear and non-linear predictors to fit climate-based models that predict the occurrence of a disease in a pathosystem. Four selection methods were compared: stepwise, which is frequently used in linear models, combined with VIF and p-value statistical criteria (Step+VIF+Pv), and other methods commonly used in ML: filter (F), genetic algorithm (GA), and Boruta (B). The disease risk predictors were constructed with a logistic linear regression model (LR) and the random forest (RF) algorithm, using all the available variables and the subgroups of variables selected by each feature selection method. Data from three pathosystems were processed: two involving Begomovirus –one in common bean (Phaseolus vulgaris L) and the other in soybean (Glycine max)– and the third one involving Mal de Rio Cuarto virus in maize (Zea mays L.). The data sets differed in sample size and number of variables. The accuracy of RF prediction did not vary among feature selection methods. Step+VIF+Pv was used to reduce the model outperformed the other feature selection methods in fitting LR. Our proposal suggests that the appropriate pairing of variable selection and prediction models would improve the modeling of plant disease risk.
Instituto de Patología Vegetal
Fil: Suarez, Franco. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina
Fil: Suarez, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentina
Fil: Suarez, Franco. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina
Fil: Bruno, Cecilia. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina
Fil: Bruno, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentina
Fil: Bruno, Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina
Fil: Kurina Giannini, Franca. Aarhus Universitet. institut for agroøkologi. Jornær sektioner; Dinamarca
Fil: Gimenez, Maria De La Paz. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina
Fil: Gimenez, Maria De La Paz. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentina
Fil: Rodriguez Pardina, Patricia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina
Fil: Rodriguez Pardina, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentina
Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina
Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentina
Fil: Balzarini, Mónica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina - Fuente
- European Journal of Agronomy 151: 126995 (November 2023)
- Materia
-
Multicollinearity
Plant Diseases
Multicolinearidad
Enfermedades de las Plantas
Logistic Regression
Random Forest
Feature Selection
Prediction Models
Pathosystems - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/15634
Ver los metadatos del registro completo
id |
INTADig_1186c6a02b7f13e7ee4317bb2b723eed |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/15634 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Marriage between variable selection and prediction methods to model plant disease riskSuarez, FrancoBruno, CeciliaKurina Giannini, FrancaGimenez, MariaRodriguez Pardina, PatriciaBalzarini, Mónica GracielaMulticollinearityPlant DiseasesMulticolinearidadEnfermedades de las PlantasLogistic RegressionRandom ForestFeature SelectionPrediction ModelsPathosystemsPredicting the risk of a disease in a pathosystem based on a set of climatic variables usually requires handling a high number of input variables, many of which are often irrelevant and/or redundant. Building linear predictive models entails not only dimensionality issues but also the negative impact of multicollinearity. Several feature selection methods have proved to be efficient in both linear and non-linear models, regardless of those issues. However, in a machine learning (ML) context, it is necessary to evaluate these feature selection methods embedded into the model fitting algorithm to obtain the greatest accuracy. The aim of this work was to assess different combinations of variable selection methods with linear and non-linear predictors to fit climate-based models that predict the occurrence of a disease in a pathosystem. Four selection methods were compared: stepwise, which is frequently used in linear models, combined with VIF and p-value statistical criteria (Step+VIF+Pv), and other methods commonly used in ML: filter (F), genetic algorithm (GA), and Boruta (B). The disease risk predictors were constructed with a logistic linear regression model (LR) and the random forest (RF) algorithm, using all the available variables and the subgroups of variables selected by each feature selection method. Data from three pathosystems were processed: two involving Begomovirus –one in common bean (Phaseolus vulgaris L) and the other in soybean (Glycine max)– and the third one involving Mal de Rio Cuarto virus in maize (Zea mays L.). The data sets differed in sample size and number of variables. The accuracy of RF prediction did not vary among feature selection methods. Step+VIF+Pv was used to reduce the model outperformed the other feature selection methods in fitting LR. Our proposal suggests that the appropriate pairing of variable selection and prediction models would improve the modeling of plant disease risk.Instituto de Patología VegetalFil: Suarez, Franco. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; ArgentinaFil: Suarez, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Suarez, Franco. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Bruno, Cecilia. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; ArgentinaFil: Bruno, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Bruno, Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Kurina Giannini, Franca. Aarhus Universitet. institut for agroøkologi. Jornær sektioner; DinamarcaFil: Gimenez, Maria De La Paz. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Gimenez, Maria De La Paz. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Rodriguez Pardina, Patricia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Rodriguez Pardina, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; ArgentinaFil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Balzarini, Mónica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaElsevier2023-10-23T10:21:16Z2023-10-23T10:21:16Z2023-10-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/15634https://www.sciencedirect.com/science/article/pii/S11610301230026301161-0301https://doi.org/10.1016/j.eja.2023.126995European Journal of Agronomy 151: 126995 (November 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:46:09Zoai:localhost:20.500.12123/15634instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:46:10.268INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Marriage between variable selection and prediction methods to model plant disease risk |
title |
Marriage between variable selection and prediction methods to model plant disease risk |
spellingShingle |
Marriage between variable selection and prediction methods to model plant disease risk Suarez, Franco Multicollinearity Plant Diseases Multicolinearidad Enfermedades de las Plantas Logistic Regression Random Forest Feature Selection Prediction Models Pathosystems |
title_short |
Marriage between variable selection and prediction methods to model plant disease risk |
title_full |
Marriage between variable selection and prediction methods to model plant disease risk |
title_fullStr |
Marriage between variable selection and prediction methods to model plant disease risk |
title_full_unstemmed |
Marriage between variable selection and prediction methods to model plant disease risk |
title_sort |
Marriage between variable selection and prediction methods to model plant disease risk |
dc.creator.none.fl_str_mv |
Suarez, Franco Bruno, Cecilia Kurina Giannini, Franca Gimenez, Maria Rodriguez Pardina, Patricia Balzarini, Mónica Graciela |
author |
Suarez, Franco |
author_facet |
Suarez, Franco Bruno, Cecilia Kurina Giannini, Franca Gimenez, Maria Rodriguez Pardina, Patricia Balzarini, Mónica Graciela |
author_role |
author |
author2 |
Bruno, Cecilia Kurina Giannini, Franca Gimenez, Maria Rodriguez Pardina, Patricia Balzarini, Mónica Graciela |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Multicollinearity Plant Diseases Multicolinearidad Enfermedades de las Plantas Logistic Regression Random Forest Feature Selection Prediction Models Pathosystems |
topic |
Multicollinearity Plant Diseases Multicolinearidad Enfermedades de las Plantas Logistic Regression Random Forest Feature Selection Prediction Models Pathosystems |
dc.description.none.fl_txt_mv |
Predicting the risk of a disease in a pathosystem based on a set of climatic variables usually requires handling a high number of input variables, many of which are often irrelevant and/or redundant. Building linear predictive models entails not only dimensionality issues but also the negative impact of multicollinearity. Several feature selection methods have proved to be efficient in both linear and non-linear models, regardless of those issues. However, in a machine learning (ML) context, it is necessary to evaluate these feature selection methods embedded into the model fitting algorithm to obtain the greatest accuracy. The aim of this work was to assess different combinations of variable selection methods with linear and non-linear predictors to fit climate-based models that predict the occurrence of a disease in a pathosystem. Four selection methods were compared: stepwise, which is frequently used in linear models, combined with VIF and p-value statistical criteria (Step+VIF+Pv), and other methods commonly used in ML: filter (F), genetic algorithm (GA), and Boruta (B). The disease risk predictors were constructed with a logistic linear regression model (LR) and the random forest (RF) algorithm, using all the available variables and the subgroups of variables selected by each feature selection method. Data from three pathosystems were processed: two involving Begomovirus –one in common bean (Phaseolus vulgaris L) and the other in soybean (Glycine max)– and the third one involving Mal de Rio Cuarto virus in maize (Zea mays L.). The data sets differed in sample size and number of variables. The accuracy of RF prediction did not vary among feature selection methods. Step+VIF+Pv was used to reduce the model outperformed the other feature selection methods in fitting LR. Our proposal suggests that the appropriate pairing of variable selection and prediction models would improve the modeling of plant disease risk. Instituto de Patología Vegetal Fil: Suarez, Franco. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina Fil: Suarez, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentina Fil: Suarez, Franco. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina Fil: Bruno, Cecilia. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina Fil: Bruno, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentina Fil: Bruno, Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina Fil: Kurina Giannini, Franca. Aarhus Universitet. institut for agroøkologi. Jornær sektioner; Dinamarca Fil: Gimenez, Maria De La Paz. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina Fil: Gimenez, Maria De La Paz. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentina Fil: Rodriguez Pardina, Patricia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina Fil: Rodriguez Pardina, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentina Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentina Fil: Balzarini, Mónica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentina |
description |
Predicting the risk of a disease in a pathosystem based on a set of climatic variables usually requires handling a high number of input variables, many of which are often irrelevant and/or redundant. Building linear predictive models entails not only dimensionality issues but also the negative impact of multicollinearity. Several feature selection methods have proved to be efficient in both linear and non-linear models, regardless of those issues. However, in a machine learning (ML) context, it is necessary to evaluate these feature selection methods embedded into the model fitting algorithm to obtain the greatest accuracy. The aim of this work was to assess different combinations of variable selection methods with linear and non-linear predictors to fit climate-based models that predict the occurrence of a disease in a pathosystem. Four selection methods were compared: stepwise, which is frequently used in linear models, combined with VIF and p-value statistical criteria (Step+VIF+Pv), and other methods commonly used in ML: filter (F), genetic algorithm (GA), and Boruta (B). The disease risk predictors were constructed with a logistic linear regression model (LR) and the random forest (RF) algorithm, using all the available variables and the subgroups of variables selected by each feature selection method. Data from three pathosystems were processed: two involving Begomovirus –one in common bean (Phaseolus vulgaris L) and the other in soybean (Glycine max)– and the third one involving Mal de Rio Cuarto virus in maize (Zea mays L.). The data sets differed in sample size and number of variables. The accuracy of RF prediction did not vary among feature selection methods. Step+VIF+Pv was used to reduce the model outperformed the other feature selection methods in fitting LR. Our proposal suggests that the appropriate pairing of variable selection and prediction models would improve the modeling of plant disease risk. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-23T10:21:16Z 2023-10-23T10:21:16Z 2023-10-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/15634 https://www.sciencedirect.com/science/article/pii/S1161030123002630 1161-0301 https://doi.org/10.1016/j.eja.2023.126995 |
url |
http://hdl.handle.net/20.500.12123/15634 https://www.sciencedirect.com/science/article/pii/S1161030123002630 https://doi.org/10.1016/j.eja.2023.126995 |
identifier_str_mv |
1161-0301 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
European Journal of Agronomy 151: 126995 (November 2023) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619180460998656 |
score |
12.559606 |