A context-based perspective on frost analysis in reuse-oriented big data-system developments
- Autores
- Bucella, Agustina; Cechich, Alejandra; Saurin, Federico; Montenegro, Ayelen; Rodriguez, Andrea Betiana; Muñoz, Angel Rafael
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The large amount of available data, generated every second via sensors, social networks, organizations, and so on, has generated new lines of research that involve novel methods, techniques, resources, and/or technologies. The development of big data systems (BDSs) can be approached from different perspectives, all of them useful, depending on the objectives pursued. In particular, in this work, we address BDSs in the area of software engineering, contributing to the generation of novel methodologies and techniques for software reuse. In this article, we propose a methodology to develop reusable BDSs by mirroring activities from software product line engineering. This means that the process of building BDSs is approached by analyzing the variety of domain features and modeling them as a family of related assets. The contextual perspective of the proposal, along with its supporting tool, is introduced through a case study in the agrometeorology domain. The characterization of variables for frost analysis exemplifies the importance of identifying variety, as well as the possibility of reusing previous analyses adjusted to the profile of each case. In addition to showing interesting findings from the case, we also exemplify our concept of context variety, which is a core element in modeling reusable BDSs.
EEA Alto Valle
Fil: Bucella, Agustina. Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); Argentina
Fil: Cechich, Alejandra. Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); Argentina
Fil: Saurin, Federico. . Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); Argentina
Fil: Montenegro, Ayelen. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentina
Fil: Rodríguez, Andrea Betiana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentina
Fil: Muñoz, Ángel Rafael. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentina - Fuente
- Information 15 (11) : 661 (October 2024)
- Materia
-
Macrodato
Desarrollo de Programas Informáticos
Procesamiento de Datos
Análisis de Datos
Helada
Agrometeorología
Big Data
Software Development
Data Processing
Data Analysis
Frost
Agrometeorology
Reusabilidad
Sistemas de Big Data
Identificación de Variedades
Dominio de la Agrometeorología
Reusability
Big Data Systems
Variety Identification
Agrometeorology Domain - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/23266
Ver los metadatos del registro completo
| id |
INTADig_00035fe367989fa2c021620640c4b599 |
|---|---|
| oai_identifier_str |
oai:localhost:20.500.12123/23266 |
| network_acronym_str |
INTADig |
| repository_id_str |
l |
| network_name_str |
INTA Digital (INTA) |
| spelling |
A context-based perspective on frost analysis in reuse-oriented big data-system developmentsBucella, AgustinaCechich, AlejandraSaurin, FedericoMontenegro, AyelenRodriguez, Andrea BetianaMuñoz, Angel RafaelMacrodatoDesarrollo de Programas InformáticosProcesamiento de DatosAnálisis de DatosHeladaAgrometeorologíaBig DataSoftware DevelopmentData ProcessingData AnalysisFrostAgrometeorologyReusabilidadSistemas de Big DataIdentificación de VariedadesDominio de la AgrometeorologíaReusabilityBig Data SystemsVariety IdentificationAgrometeorology DomainThe large amount of available data, generated every second via sensors, social networks, organizations, and so on, has generated new lines of research that involve novel methods, techniques, resources, and/or technologies. The development of big data systems (BDSs) can be approached from different perspectives, all of them useful, depending on the objectives pursued. In particular, in this work, we address BDSs in the area of software engineering, contributing to the generation of novel methodologies and techniques for software reuse. In this article, we propose a methodology to develop reusable BDSs by mirroring activities from software product line engineering. This means that the process of building BDSs is approached by analyzing the variety of domain features and modeling them as a family of related assets. The contextual perspective of the proposal, along with its supporting tool, is introduced through a case study in the agrometeorology domain. The characterization of variables for frost analysis exemplifies the importance of identifying variety, as well as the possibility of reusing previous analyses adjusted to the profile of each case. In addition to showing interesting findings from the case, we also exemplify our concept of context variety, which is a core element in modeling reusable BDSs.EEA Alto ValleFil: Bucella, Agustina. Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); ArgentinaFil: Cechich, Alejandra. Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); ArgentinaFil: Saurin, Federico. . Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); ArgentinaFil: Montenegro, Ayelen. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; ArgentinaFil: Rodríguez, Andrea Betiana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; ArgentinaFil: Muñoz, Ángel Rafael. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; ArgentinaMDPI2025-08-01T10:42:12Z2025-08-01T10:42:12Z2024-10-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/23266https://www.mdpi.com/2078-2489/15/11/6612078-2489https://doi.org/10.3390/info15110661Information 15 (11) : 661 (October 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-23T11:19:40Zoai:localhost:20.500.12123/23266instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-23 11:19:40.304INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
| dc.title.none.fl_str_mv |
A context-based perspective on frost analysis in reuse-oriented big data-system developments |
| title |
A context-based perspective on frost analysis in reuse-oriented big data-system developments |
| spellingShingle |
A context-based perspective on frost analysis in reuse-oriented big data-system developments Bucella, Agustina Macrodato Desarrollo de Programas Informáticos Procesamiento de Datos Análisis de Datos Helada Agrometeorología Big Data Software Development Data Processing Data Analysis Frost Agrometeorology Reusabilidad Sistemas de Big Data Identificación de Variedades Dominio de la Agrometeorología Reusability Big Data Systems Variety Identification Agrometeorology Domain |
| title_short |
A context-based perspective on frost analysis in reuse-oriented big data-system developments |
| title_full |
A context-based perspective on frost analysis in reuse-oriented big data-system developments |
| title_fullStr |
A context-based perspective on frost analysis in reuse-oriented big data-system developments |
| title_full_unstemmed |
A context-based perspective on frost analysis in reuse-oriented big data-system developments |
| title_sort |
A context-based perspective on frost analysis in reuse-oriented big data-system developments |
| dc.creator.none.fl_str_mv |
Bucella, Agustina Cechich, Alejandra Saurin, Federico Montenegro, Ayelen Rodriguez, Andrea Betiana Muñoz, Angel Rafael |
| author |
Bucella, Agustina |
| author_facet |
Bucella, Agustina Cechich, Alejandra Saurin, Federico Montenegro, Ayelen Rodriguez, Andrea Betiana Muñoz, Angel Rafael |
| author_role |
author |
| author2 |
Cechich, Alejandra Saurin, Federico Montenegro, Ayelen Rodriguez, Andrea Betiana Muñoz, Angel Rafael |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Macrodato Desarrollo de Programas Informáticos Procesamiento de Datos Análisis de Datos Helada Agrometeorología Big Data Software Development Data Processing Data Analysis Frost Agrometeorology Reusabilidad Sistemas de Big Data Identificación de Variedades Dominio de la Agrometeorología Reusability Big Data Systems Variety Identification Agrometeorology Domain |
| topic |
Macrodato Desarrollo de Programas Informáticos Procesamiento de Datos Análisis de Datos Helada Agrometeorología Big Data Software Development Data Processing Data Analysis Frost Agrometeorology Reusabilidad Sistemas de Big Data Identificación de Variedades Dominio de la Agrometeorología Reusability Big Data Systems Variety Identification Agrometeorology Domain |
| dc.description.none.fl_txt_mv |
The large amount of available data, generated every second via sensors, social networks, organizations, and so on, has generated new lines of research that involve novel methods, techniques, resources, and/or technologies. The development of big data systems (BDSs) can be approached from different perspectives, all of them useful, depending on the objectives pursued. In particular, in this work, we address BDSs in the area of software engineering, contributing to the generation of novel methodologies and techniques for software reuse. In this article, we propose a methodology to develop reusable BDSs by mirroring activities from software product line engineering. This means that the process of building BDSs is approached by analyzing the variety of domain features and modeling them as a family of related assets. The contextual perspective of the proposal, along with its supporting tool, is introduced through a case study in the agrometeorology domain. The characterization of variables for frost analysis exemplifies the importance of identifying variety, as well as the possibility of reusing previous analyses adjusted to the profile of each case. In addition to showing interesting findings from the case, we also exemplify our concept of context variety, which is a core element in modeling reusable BDSs. EEA Alto Valle Fil: Bucella, Agustina. Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); Argentina Fil: Cechich, Alejandra. Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); Argentina Fil: Saurin, Federico. . Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); Argentina Fil: Montenegro, Ayelen. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentina Fil: Rodríguez, Andrea Betiana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentina Fil: Muñoz, Ángel Rafael. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentina |
| description |
The large amount of available data, generated every second via sensors, social networks, organizations, and so on, has generated new lines of research that involve novel methods, techniques, resources, and/or technologies. The development of big data systems (BDSs) can be approached from different perspectives, all of them useful, depending on the objectives pursued. In particular, in this work, we address BDSs in the area of software engineering, contributing to the generation of novel methodologies and techniques for software reuse. In this article, we propose a methodology to develop reusable BDSs by mirroring activities from software product line engineering. This means that the process of building BDSs is approached by analyzing the variety of domain features and modeling them as a family of related assets. The contextual perspective of the proposal, along with its supporting tool, is introduced through a case study in the agrometeorology domain. The characterization of variables for frost analysis exemplifies the importance of identifying variety, as well as the possibility of reusing previous analyses adjusted to the profile of each case. In addition to showing interesting findings from the case, we also exemplify our concept of context variety, which is a core element in modeling reusable BDSs. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-10-22 2025-08-01T10:42:12Z 2025-08-01T10:42:12Z |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/23266 https://www.mdpi.com/2078-2489/15/11/661 2078-2489 https://doi.org/10.3390/info15110661 |
| url |
http://hdl.handle.net/20.500.12123/23266 https://www.mdpi.com/2078-2489/15/11/661 https://doi.org/10.3390/info15110661 |
| identifier_str_mv |
2078-2489 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI |
| publisher.none.fl_str_mv |
MDPI |
| dc.source.none.fl_str_mv |
Information 15 (11) : 661 (October 2024) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
| reponame_str |
INTA Digital (INTA) |
| collection |
INTA Digital (INTA) |
| instname_str |
Instituto Nacional de Tecnología Agropecuaria |
| repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
| repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
| _version_ |
1846787608282136576 |
| score |
12.982451 |