Fungal endophytes exert positive effects on colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica

Autores
Hereme, Rasme; Morales Navarro, Samuel; Ballesteros, Gabriel; Barrera, Andrea; Ramos, Patricio; Gundel, Pedro Emilio; Molina Montenegro, Marco A.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Hereme, Rasme. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile.
Fil: Morales Navarro, Samuel. Universidad Santo Tomás. Facultad de Ciencias. Bachillerato en Ciencias. Talca, Chile.
Fil: Ballesteros, Gabriel. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile.
Fil: Barrera, Andrea. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile.
Fil: Ramos, Patricio. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile. - Universidad de Talca. Núcleo Científico Multidisciplinario-DI. Talca, Chile.
Fil: Gundel, Pedro Emilio. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Molina Montenegro, Marco A. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile. - Universidad Católica del Norte. Centro de Estudios Avanzados en Zonas Áridas. Antofagasta, Chile. - Universidad Católica del Maule. Centro de Investigación en Estudios Avanzados del Maule. Talca, Chile.
Functional symbiosis is considered one of the successful mechanisms by which plants that inhabit extreme environment improve their ability to tolerate different types of stress. One of the most conspicuous type of symbiosis is the endophyticism. This interaction has been noted to play a role in the adaptation of the native vascular plant Colobanthus quitensis to the stressful environments of Antarctica, characterized by low temperatures and extreme aridity. Projections of climate change for this ecosystem indicate that abiotic conditions will be less limiting due to an increase in temperature and water availability in the soil. Due to this decrease in stress induced by the climate change, it has been suggested that the positive role of fungal endophytes on performance of C. quitensis plants would decrease. In this study, we evaluated the role of endophytic fungi on osmoprotective molecules (sugar production, proline, oxidative stress) and gene expression (CqNCED1, CqABCG25, and CqRD22) as well as physiological traits (stomatal opening, net photosynthesis, and stomatal conductance) in individuals of C. quitensis. Individual plants of C. quitensis with (EC) and without (E) endophytic fungi were exposed to simulated conditions of increased water availability (WC), having the current limiting water condition (W+) in Antarctica as control. The results reveal an endophyte-mediated lower oxidative stress, higher production of sugars and proline in plants. In addition, EC plants showed differential expressions in genes related with drought stress response, which was more evident in W+ than in WC. These parameters corresponded with increased physiological mechanisms such as higher net photosynthesis, stomatal opening and conductance under presence of endophytes (EC) as well as the projected water condition (WC) for Antarctica. These results suggest that the presence of fungal endophytes plays a positive role in favoring.
tbls., grafs., fot.
Fuente
Frontiers in microbiology
Vol.11
Article 264
https://www.frontiersin.org
Materia
FUNCTIONAL SYMBIOSIS
ANTARCTICA
CLIMATE CHANGE
COLOBANTHUS QUITENSIS
OSMOPROTECTIVE MOLECULES
WATER STRESS
ABSCISIC ACID
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2020hereme

id FAUBA_6ae0840d480405af4edaa5a581c8b96d
oai_identifier_str snrd:2020hereme
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling Fungal endophytes exert positive effects on colobanthus quitensis under water stress but neutral under a projected climate change scenario in AntarcticaHereme, RasmeMorales Navarro, SamuelBallesteros, GabrielBarrera, AndreaRamos, PatricioGundel, Pedro EmilioMolina Montenegro, Marco A.FUNCTIONAL SYMBIOSISANTARCTICACLIMATE CHANGECOLOBANTHUS QUITENSISOSMOPROTECTIVE MOLECULESWATER STRESSABSCISIC ACIDFil: Hereme, Rasme. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile.Fil: Morales Navarro, Samuel. Universidad Santo Tomás. Facultad de Ciencias. Bachillerato en Ciencias. Talca, Chile.Fil: Ballesteros, Gabriel. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile.Fil: Barrera, Andrea. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile.Fil: Ramos, Patricio. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile. - Universidad de Talca. Núcleo Científico Multidisciplinario-DI. Talca, Chile.Fil: Gundel, Pedro Emilio. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Fil: Molina Montenegro, Marco A. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile. - Universidad Católica del Norte. Centro de Estudios Avanzados en Zonas Áridas. Antofagasta, Chile. - Universidad Católica del Maule. Centro de Investigación en Estudios Avanzados del Maule. Talca, Chile.Functional symbiosis is considered one of the successful mechanisms by which plants that inhabit extreme environment improve their ability to tolerate different types of stress. One of the most conspicuous type of symbiosis is the endophyticism. This interaction has been noted to play a role in the adaptation of the native vascular plant Colobanthus quitensis to the stressful environments of Antarctica, characterized by low temperatures and extreme aridity. Projections of climate change for this ecosystem indicate that abiotic conditions will be less limiting due to an increase in temperature and water availability in the soil. Due to this decrease in stress induced by the climate change, it has been suggested that the positive role of fungal endophytes on performance of C. quitensis plants would decrease. In this study, we evaluated the role of endophytic fungi on osmoprotective molecules (sugar production, proline, oxidative stress) and gene expression (CqNCED1, CqABCG25, and CqRD22) as well as physiological traits (stomatal opening, net photosynthesis, and stomatal conductance) in individuals of C. quitensis. Individual plants of C. quitensis with (EC) and without (E) endophytic fungi were exposed to simulated conditions of increased water availability (WC), having the current limiting water condition (W+) in Antarctica as control. The results reveal an endophyte-mediated lower oxidative stress, higher production of sugars and proline in plants. In addition, EC plants showed differential expressions in genes related with drought stress response, which was more evident in W+ than in WC. These parameters corresponded with increased physiological mechanisms such as higher net photosynthesis, stomatal opening and conductance under presence of endophytes (EC) as well as the projected water condition (WC) for Antarctica. These results suggest that the presence of fungal endophytes plays a positive role in favoring.tbls., grafs., fot.2020articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.3389/fmicb.2020.00264issn:1664-302Xhttp://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020heremeFrontiers in microbiologyVol.11Article 264https://www.frontiersin.orgreponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaeng1000007Antarctica (continent)info:eu-repo/semantics/openAccessopenAccess2025-09-29T13:41:25Zsnrd:2020heremeinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-29 13:41:26.151FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv Fungal endophytes exert positive effects on colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica
title Fungal endophytes exert positive effects on colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica
spellingShingle Fungal endophytes exert positive effects on colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica
Hereme, Rasme
FUNCTIONAL SYMBIOSIS
ANTARCTICA
CLIMATE CHANGE
COLOBANTHUS QUITENSIS
OSMOPROTECTIVE MOLECULES
WATER STRESS
ABSCISIC ACID
title_short Fungal endophytes exert positive effects on colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica
title_full Fungal endophytes exert positive effects on colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica
title_fullStr Fungal endophytes exert positive effects on colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica
title_full_unstemmed Fungal endophytes exert positive effects on colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica
title_sort Fungal endophytes exert positive effects on colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica
dc.creator.none.fl_str_mv Hereme, Rasme
Morales Navarro, Samuel
Ballesteros, Gabriel
Barrera, Andrea
Ramos, Patricio
Gundel, Pedro Emilio
Molina Montenegro, Marco A.
author Hereme, Rasme
author_facet Hereme, Rasme
Morales Navarro, Samuel
Ballesteros, Gabriel
Barrera, Andrea
Ramos, Patricio
Gundel, Pedro Emilio
Molina Montenegro, Marco A.
author_role author
author2 Morales Navarro, Samuel
Ballesteros, Gabriel
Barrera, Andrea
Ramos, Patricio
Gundel, Pedro Emilio
Molina Montenegro, Marco A.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv FUNCTIONAL SYMBIOSIS
ANTARCTICA
CLIMATE CHANGE
COLOBANTHUS QUITENSIS
OSMOPROTECTIVE MOLECULES
WATER STRESS
ABSCISIC ACID
topic FUNCTIONAL SYMBIOSIS
ANTARCTICA
CLIMATE CHANGE
COLOBANTHUS QUITENSIS
OSMOPROTECTIVE MOLECULES
WATER STRESS
ABSCISIC ACID
dc.description.none.fl_txt_mv Fil: Hereme, Rasme. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile.
Fil: Morales Navarro, Samuel. Universidad Santo Tomás. Facultad de Ciencias. Bachillerato en Ciencias. Talca, Chile.
Fil: Ballesteros, Gabriel. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile.
Fil: Barrera, Andrea. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile.
Fil: Ramos, Patricio. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile. - Universidad de Talca. Núcleo Científico Multidisciplinario-DI. Talca, Chile.
Fil: Gundel, Pedro Emilio. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. - CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Molina Montenegro, Marco A. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile. - Universidad Católica del Norte. Centro de Estudios Avanzados en Zonas Áridas. Antofagasta, Chile. - Universidad Católica del Maule. Centro de Investigación en Estudios Avanzados del Maule. Talca, Chile.
Functional symbiosis is considered one of the successful mechanisms by which plants that inhabit extreme environment improve their ability to tolerate different types of stress. One of the most conspicuous type of symbiosis is the endophyticism. This interaction has been noted to play a role in the adaptation of the native vascular plant Colobanthus quitensis to the stressful environments of Antarctica, characterized by low temperatures and extreme aridity. Projections of climate change for this ecosystem indicate that abiotic conditions will be less limiting due to an increase in temperature and water availability in the soil. Due to this decrease in stress induced by the climate change, it has been suggested that the positive role of fungal endophytes on performance of C. quitensis plants would decrease. In this study, we evaluated the role of endophytic fungi on osmoprotective molecules (sugar production, proline, oxidative stress) and gene expression (CqNCED1, CqABCG25, and CqRD22) as well as physiological traits (stomatal opening, net photosynthesis, and stomatal conductance) in individuals of C. quitensis. Individual plants of C. quitensis with (EC) and without (E) endophytic fungi were exposed to simulated conditions of increased water availability (WC), having the current limiting water condition (W+) in Antarctica as control. The results reveal an endophyte-mediated lower oxidative stress, higher production of sugars and proline in plants. In addition, EC plants showed differential expressions in genes related with drought stress response, which was more evident in W+ than in WC. These parameters corresponded with increased physiological mechanisms such as higher net photosynthesis, stomatal opening and conductance under presence of endophytes (EC) as well as the projected water condition (WC) for Antarctica. These results suggest that the presence of fungal endophytes plays a positive role in favoring.
tbls., grafs., fot.
description Fil: Hereme, Rasme. Universidad de Talca. Instituto de Ciencias Biológicas. Talca, Chile.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv doi:10.3389/fmicb.2020.00264
issn:1664-302X
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020hereme
identifier_str_mv doi:10.3389/fmicb.2020.00264
issn:1664-302X
url http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020hereme
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv 1000007
Antarctica (continent)
dc.source.none.fl_str_mv Frontiers in microbiology
Vol.11
Article 264
https://www.frontiersin.org
reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1844618857294069760
score 13.070432