Soybean growth under stable versus peak salinity
- Autores
- Bustingorri, Carolina; Lavado, Raúl Silvio
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.
Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.
Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.
Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.
The production of soybean (Glycine max L.) has doubled in the last two decades. It is now being grown on both traditional arable lands and on marginal soils, including saline soils, in various parts of the world. Most research on crop tolerance to salinity has been performed using soils with stable levels of salinity. However, there are soils that undergo sudden increases in topsoil salinity for short periods of time. The aim of this study was to compare the effect of stable salinity concentrations with peaks of salinity for their effects on soybean vegetative growth, grain yield, and the accumulation of chlorides. The response of soybean growth was evaluated in pot experiments with the following treatments: Control (non saline soil), soil salinity level of 0.4 S m -1 (0.4S) or 0.8 S m -1 (0.8S), and soil subjected to salinity peaks of 0.4 S m -1 (0.4P) and 0.8 S m -1 (0.8P). The salinity levels were obtained by application of saline irrigation water. Soybean responded differently to stable salinity levels versus peaks of salinity. When salinity was a permanent stress factor, regardless of the salinity level (i.e. 0.4 and 0.8 S m -1), biomass production and differentiation of reproductive organs was greatly affected. For 0.8S treated plants, they never reached the reproductive phase. Conversely, only small differences in growth data were found between 0.4P and Control treatments, although an 80 percent decrease in yield was associated with the 0.4P treatment. To obtain a reasonable soybean yield, a leaf chloride concentration of 1 mg g -1 of Cl - in dry matter should be considered a maximum threshold. - Fuente
- Scientia Agricola
Vol.68, no.1
102-108
http://www.esalq.usp.br/ - Materia
-
CHLORIDE ACCUMULATION
GLYCINE MAX L.
NACL
SALINE IRRIGATION
YIELD LOSS
GLYCINE MAX - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- acceso abierto
- Repositorio
.jpg)
- Institución
- Universidad de Buenos Aires. Facultad de Agronomía
- OAI Identificador
- snrd:2011Bustingorri
Ver los metadatos del registro completo
| id |
FAUBA_57fc68ce9a62fdc4caf5f6f691dfd03a |
|---|---|
| oai_identifier_str |
snrd:2011Bustingorri |
| network_acronym_str |
FAUBA |
| repository_id_str |
2729 |
| network_name_str |
FAUBA Digital (UBA-FAUBA) |
| spelling |
Soybean growth under stable versus peak salinityBustingorri, CarolinaLavado, Raúl SilvioCHLORIDE ACCUMULATIONGLYCINE MAX L.NACLSALINE IRRIGATIONYIELD LOSSGLYCINE MAXFil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.The production of soybean (Glycine max L.) has doubled in the last two decades. It is now being grown on both traditional arable lands and on marginal soils, including saline soils, in various parts of the world. Most research on crop tolerance to salinity has been performed using soils with stable levels of salinity. However, there are soils that undergo sudden increases in topsoil salinity for short periods of time. The aim of this study was to compare the effect of stable salinity concentrations with peaks of salinity for their effects on soybean vegetative growth, grain yield, and the accumulation of chlorides. The response of soybean growth was evaluated in pot experiments with the following treatments: Control (non saline soil), soil salinity level of 0.4 S m -1 (0.4S) or 0.8 S m -1 (0.8S), and soil subjected to salinity peaks of 0.4 S m -1 (0.4P) and 0.8 S m -1 (0.8P). The salinity levels were obtained by application of saline irrigation water. Soybean responded differently to stable salinity levels versus peaks of salinity. When salinity was a permanent stress factor, regardless of the salinity level (i.e. 0.4 and 0.8 S m -1), biomass production and differentiation of reproductive organs was greatly affected. For 0.8S treated plants, they never reached the reproductive phase. Conversely, only small differences in growth data were found between 0.4P and Control treatments, although an 80 percent decrease in yield was associated with the 0.4P treatment. To obtain a reasonable soybean yield, a leaf chloride concentration of 1 mg g -1 of Cl - in dry matter should be considered a maximum threshold.2011articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.1590/S0103-90162011000100015issn:0103-9016http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2011BustingorriScientia AgricolaVol.68, no.1102-108http://www.esalq.usp.br/reponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccesshttp://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section42025-10-23T11:15:14Zsnrd:2011Bustingorriinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-10-23 11:15:15.119FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse |
| dc.title.none.fl_str_mv |
Soybean growth under stable versus peak salinity |
| title |
Soybean growth under stable versus peak salinity |
| spellingShingle |
Soybean growth under stable versus peak salinity Bustingorri, Carolina CHLORIDE ACCUMULATION GLYCINE MAX L. NACL SALINE IRRIGATION YIELD LOSS GLYCINE MAX |
| title_short |
Soybean growth under stable versus peak salinity |
| title_full |
Soybean growth under stable versus peak salinity |
| title_fullStr |
Soybean growth under stable versus peak salinity |
| title_full_unstemmed |
Soybean growth under stable versus peak salinity |
| title_sort |
Soybean growth under stable versus peak salinity |
| dc.creator.none.fl_str_mv |
Bustingorri, Carolina Lavado, Raúl Silvio |
| author |
Bustingorri, Carolina |
| author_facet |
Bustingorri, Carolina Lavado, Raúl Silvio |
| author_role |
author |
| author2 |
Lavado, Raúl Silvio |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
CHLORIDE ACCUMULATION GLYCINE MAX L. NACL SALINE IRRIGATION YIELD LOSS GLYCINE MAX |
| topic |
CHLORIDE ACCUMULATION GLYCINE MAX L. NACL SALINE IRRIGATION YIELD LOSS GLYCINE MAX |
| dc.description.none.fl_txt_mv |
Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina. Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina. Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina. Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina. The production of soybean (Glycine max L.) has doubled in the last two decades. It is now being grown on both traditional arable lands and on marginal soils, including saline soils, in various parts of the world. Most research on crop tolerance to salinity has been performed using soils with stable levels of salinity. However, there are soils that undergo sudden increases in topsoil salinity for short periods of time. The aim of this study was to compare the effect of stable salinity concentrations with peaks of salinity for their effects on soybean vegetative growth, grain yield, and the accumulation of chlorides. The response of soybean growth was evaluated in pot experiments with the following treatments: Control (non saline soil), soil salinity level of 0.4 S m -1 (0.4S) or 0.8 S m -1 (0.8S), and soil subjected to salinity peaks of 0.4 S m -1 (0.4P) and 0.8 S m -1 (0.8P). The salinity levels were obtained by application of saline irrigation water. Soybean responded differently to stable salinity levels versus peaks of salinity. When salinity was a permanent stress factor, regardless of the salinity level (i.e. 0.4 and 0.8 S m -1), biomass production and differentiation of reproductive organs was greatly affected. For 0.8S treated plants, they never reached the reproductive phase. Conversely, only small differences in growth data were found between 0.4P and Control treatments, although an 80 percent decrease in yield was associated with the 0.4P treatment. To obtain a reasonable soybean yield, a leaf chloride concentration of 1 mg g -1 of Cl - in dry matter should be considered a maximum threshold. |
| description |
Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011 |
| dc.type.none.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
doi:10.1590/S0103-90162011000100015 issn:0103-9016 http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2011Bustingorri |
| identifier_str_mv |
doi:10.1590/S0103-90162011000100015 issn:0103-9016 |
| url |
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2011Bustingorri |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess openAccess http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4 |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
openAccess http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4 |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Scientia Agricola Vol.68, no.1 102-108 http://www.esalq.usp.br/ reponame:FAUBA Digital (UBA-FAUBA) instname:Universidad de Buenos Aires. Facultad de Agronomía |
| reponame_str |
FAUBA Digital (UBA-FAUBA) |
| collection |
FAUBA Digital (UBA-FAUBA) |
| instname_str |
Universidad de Buenos Aires. Facultad de Agronomía |
| repository.name.fl_str_mv |
FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía |
| repository.mail.fl_str_mv |
martino@agro.uba.ar;berasa@agro.uba.ar |
| _version_ |
1846785096514797568 |
| score |
12.982451 |