Soybean growth under stable versus peak salinity

Autores
Bustingorri, Carolina; Lavado, Raúl Silvio
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.
Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.
Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.
Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.
The production of soybean (Glycine max L.) has doubled in the last two decades. It is now being grown on both traditional arable lands and on marginal soils, including saline soils, in various parts of the world. Most research on crop tolerance to salinity has been performed using soils with stable levels of salinity. However, there are soils that undergo sudden increases in topsoil salinity for short periods of time. The aim of this study was to compare the effect of stable salinity concentrations with peaks of salinity for their effects on soybean vegetative growth, grain yield, and the accumulation of chlorides. The response of soybean growth was evaluated in pot experiments with the following treatments: Control (non saline soil), soil salinity level of 0.4 S m -1 (0.4S) or 0.8 S m -1 (0.8S), and soil subjected to salinity peaks of 0.4 S m -1 (0.4P) and 0.8 S m -1 (0.8P). The salinity levels were obtained by application of saline irrigation water. Soybean responded differently to stable salinity levels versus peaks of salinity. When salinity was a permanent stress factor, regardless of the salinity level (i.e. 0.4 and 0.8 S m -1), biomass production and differentiation of reproductive organs was greatly affected. For 0.8S treated plants, they never reached the reproductive phase. Conversely, only small differences in growth data were found between 0.4P and Control treatments, although an 80 percent decrease in yield was associated with the 0.4P treatment. To obtain a reasonable soybean yield, a leaf chloride concentration of 1 mg g -1 of Cl - in dry matter should be considered a maximum threshold.
Fuente
Scientia Agricola
Vol.68, no.1
102-108
http://www.esalq.usp.br/
Materia
CHLORIDE ACCUMULATION
GLYCINE MAX L.
NACL
SALINE IRRIGATION
YIELD LOSS
GLYCINE MAX
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2011Bustingorri

id FAUBA_57fc68ce9a62fdc4caf5f6f691dfd03a
oai_identifier_str snrd:2011Bustingorri
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling Soybean growth under stable versus peak salinityBustingorri, CarolinaLavado, Raúl SilvioCHLORIDE ACCUMULATIONGLYCINE MAX L.NACLSALINE IRRIGATIONYIELD LOSSGLYCINE MAXFil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.The production of soybean (Glycine max L.) has doubled in the last two decades. It is now being grown on both traditional arable lands and on marginal soils, including saline soils, in various parts of the world. Most research on crop tolerance to salinity has been performed using soils with stable levels of salinity. However, there are soils that undergo sudden increases in topsoil salinity for short periods of time. The aim of this study was to compare the effect of stable salinity concentrations with peaks of salinity for their effects on soybean vegetative growth, grain yield, and the accumulation of chlorides. The response of soybean growth was evaluated in pot experiments with the following treatments: Control (non saline soil), soil salinity level of 0.4 S m -1 (0.4S) or 0.8 S m -1 (0.8S), and soil subjected to salinity peaks of 0.4 S m -1 (0.4P) and 0.8 S m -1 (0.8P). The salinity levels were obtained by application of saline irrigation water. Soybean responded differently to stable salinity levels versus peaks of salinity. When salinity was a permanent stress factor, regardless of the salinity level (i.e. 0.4 and 0.8 S m -1), biomass production and differentiation of reproductive organs was greatly affected. For 0.8S treated plants, they never reached the reproductive phase. Conversely, only small differences in growth data were found between 0.4P and Control treatments, although an 80 percent decrease in yield was associated with the 0.4P treatment. To obtain a reasonable soybean yield, a leaf chloride concentration of 1 mg g -1 of Cl - in dry matter should be considered a maximum threshold.2011articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.1590/S0103-90162011000100015issn:0103-9016http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2011BustingorriScientia AgricolaVol.68, no.1102-108http://www.esalq.usp.br/reponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccesshttp://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section42025-10-23T11:15:14Zsnrd:2011Bustingorriinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-10-23 11:15:15.119FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv Soybean growth under stable versus peak salinity
title Soybean growth under stable versus peak salinity
spellingShingle Soybean growth under stable versus peak salinity
Bustingorri, Carolina
CHLORIDE ACCUMULATION
GLYCINE MAX L.
NACL
SALINE IRRIGATION
YIELD LOSS
GLYCINE MAX
title_short Soybean growth under stable versus peak salinity
title_full Soybean growth under stable versus peak salinity
title_fullStr Soybean growth under stable versus peak salinity
title_full_unstemmed Soybean growth under stable versus peak salinity
title_sort Soybean growth under stable versus peak salinity
dc.creator.none.fl_str_mv Bustingorri, Carolina
Lavado, Raúl Silvio
author Bustingorri, Carolina
author_facet Bustingorri, Carolina
Lavado, Raúl Silvio
author_role author
author2 Lavado, Raúl Silvio
author2_role author
dc.subject.none.fl_str_mv CHLORIDE ACCUMULATION
GLYCINE MAX L.
NACL
SALINE IRRIGATION
YIELD LOSS
GLYCINE MAX
topic CHLORIDE ACCUMULATION
GLYCINE MAX L.
NACL
SALINE IRRIGATION
YIELD LOSS
GLYCINE MAX
dc.description.none.fl_txt_mv Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.
Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.
Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.
Fil: Lavado, Raúl Silvio. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.
The production of soybean (Glycine max L.) has doubled in the last two decades. It is now being grown on both traditional arable lands and on marginal soils, including saline soils, in various parts of the world. Most research on crop tolerance to salinity has been performed using soils with stable levels of salinity. However, there are soils that undergo sudden increases in topsoil salinity for short periods of time. The aim of this study was to compare the effect of stable salinity concentrations with peaks of salinity for their effects on soybean vegetative growth, grain yield, and the accumulation of chlorides. The response of soybean growth was evaluated in pot experiments with the following treatments: Control (non saline soil), soil salinity level of 0.4 S m -1 (0.4S) or 0.8 S m -1 (0.8S), and soil subjected to salinity peaks of 0.4 S m -1 (0.4P) and 0.8 S m -1 (0.8P). The salinity levels were obtained by application of saline irrigation water. Soybean responded differently to stable salinity levels versus peaks of salinity. When salinity was a permanent stress factor, regardless of the salinity level (i.e. 0.4 and 0.8 S m -1), biomass production and differentiation of reproductive organs was greatly affected. For 0.8S treated plants, they never reached the reproductive phase. Conversely, only small differences in growth data were found between 0.4P and Control treatments, although an 80 percent decrease in yield was associated with the 0.4P treatment. To obtain a reasonable soybean yield, a leaf chloride concentration of 1 mg g -1 of Cl - in dry matter should be considered a maximum threshold.
description Fil: Bustingorri, Carolina. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv doi:10.1590/S0103-90162011000100015
issn:0103-9016
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2011Bustingorri
identifier_str_mv doi:10.1590/S0103-90162011000100015
issn:0103-9016
url http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2011Bustingorri
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scientia Agricola
Vol.68, no.1
102-108
http://www.esalq.usp.br/
reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1846785096514797568
score 12.982451