Phantom epistasis in genomic selection : on the predictive ability of epistatic models

Autores
Schrauf, Matías Florián; Martini, Johannes W. R.; Simianer, Henner; Campos, Gustavo de los; Cantet, Rodolfo Juan Carlos; Freudenthal, Jan; Korte, Arthur; Munilla Leguizamón, Sebastián
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Schrauf, Matías Florián. Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina.
Fil: Martini, Johannes W. R. International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
Fil: Simianer, Henner. University of Göttingen. Department of Animal Sciences. Center for Integrated Breeding Research. Germany.
Fil: Campos, Gustavo de los. Michigan State University. Department of Epidemiology and Biostatistics. East Lansing, Michigan, EEUU.
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina. - CONICET. Buenos Aires, Argentina.
Fil: Freudenthal, Jan. University of Würzburg. Center for Computational and Theoretical Biology (CCTB). Germany.
Fil: Korte, Arthur. University of Würzburg. Center for Computational and Theoretical Biology (CCTB). Germany.
Fil: Munilla Leguizamón, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina. - CONICET. Buenos Aires, Argentina.
Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density (“Phantom Epistasis”). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation.
grafs.
Fuente
G3: Genes, Genomes, Genetics
Vol.10, no.9
3137-3145
http://www.g3journal.org/
Materia
EPISTASIS
ADDITIVE EFFECTS
GENOMICS
BREEDING
GENPRED
GENOMIC PREDICTION
SHARED DATA RESOURCES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2020schrauf

id FAUBA_1f9ece16f686243df90e98d1e12e0e56
oai_identifier_str snrd:2020schrauf
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling Phantom epistasis in genomic selection : on the predictive ability of epistatic modelsSchrauf, Matías FloriánMartini, Johannes W. R.Simianer, HennerCampos, Gustavo de losCantet, Rodolfo Juan CarlosFreudenthal, JanKorte, ArthurMunilla Leguizamón, SebastiánEPISTASISADDITIVE EFFECTSGENOMICSBREEDINGGENPREDGENOMIC PREDICTIONSHARED DATA RESOURCESFil: Schrauf, Matías Florián. Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina.Fil: Martini, Johannes W. R. International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.Fil: Simianer, Henner. University of Göttingen. Department of Animal Sciences. Center for Integrated Breeding Research. Germany.Fil: Campos, Gustavo de los. Michigan State University. Department of Epidemiology and Biostatistics. East Lansing, Michigan, EEUU.Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina. - CONICET. Buenos Aires, Argentina.Fil: Freudenthal, Jan. University of Würzburg. Center for Computational and Theoretical Biology (CCTB). Germany.Fil: Korte, Arthur. University of Würzburg. Center for Computational and Theoretical Biology (CCTB). Germany.Fil: Munilla Leguizamón, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina. - CONICET. Buenos Aires, Argentina.Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density (“Phantom Epistasis”). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation.grafs.2020articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.1534/g3.120.401300issn:2160-1836http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020schraufG3: Genes, Genomes, GeneticsVol.10, no.93137-3145http://www.g3journal.org/reponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccess2025-09-29T13:41:49Zsnrd:2020schraufinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-29 13:41:50.632FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv Phantom epistasis in genomic selection : on the predictive ability of epistatic models
title Phantom epistasis in genomic selection : on the predictive ability of epistatic models
spellingShingle Phantom epistasis in genomic selection : on the predictive ability of epistatic models
Schrauf, Matías Florián
EPISTASIS
ADDITIVE EFFECTS
GENOMICS
BREEDING
GENPRED
GENOMIC PREDICTION
SHARED DATA RESOURCES
title_short Phantom epistasis in genomic selection : on the predictive ability of epistatic models
title_full Phantom epistasis in genomic selection : on the predictive ability of epistatic models
title_fullStr Phantom epistasis in genomic selection : on the predictive ability of epistatic models
title_full_unstemmed Phantom epistasis in genomic selection : on the predictive ability of epistatic models
title_sort Phantom epistasis in genomic selection : on the predictive ability of epistatic models
dc.creator.none.fl_str_mv Schrauf, Matías Florián
Martini, Johannes W. R.
Simianer, Henner
Campos, Gustavo de los
Cantet, Rodolfo Juan Carlos
Freudenthal, Jan
Korte, Arthur
Munilla Leguizamón, Sebastián
author Schrauf, Matías Florián
author_facet Schrauf, Matías Florián
Martini, Johannes W. R.
Simianer, Henner
Campos, Gustavo de los
Cantet, Rodolfo Juan Carlos
Freudenthal, Jan
Korte, Arthur
Munilla Leguizamón, Sebastián
author_role author
author2 Martini, Johannes W. R.
Simianer, Henner
Campos, Gustavo de los
Cantet, Rodolfo Juan Carlos
Freudenthal, Jan
Korte, Arthur
Munilla Leguizamón, Sebastián
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv EPISTASIS
ADDITIVE EFFECTS
GENOMICS
BREEDING
GENPRED
GENOMIC PREDICTION
SHARED DATA RESOURCES
topic EPISTASIS
ADDITIVE EFFECTS
GENOMICS
BREEDING
GENPRED
GENOMIC PREDICTION
SHARED DATA RESOURCES
dc.description.none.fl_txt_mv Fil: Schrauf, Matías Florián. Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina.
Fil: Martini, Johannes W. R. International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
Fil: Simianer, Henner. University of Göttingen. Department of Animal Sciences. Center for Integrated Breeding Research. Germany.
Fil: Campos, Gustavo de los. Michigan State University. Department of Epidemiology and Biostatistics. East Lansing, Michigan, EEUU.
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina. - CONICET. Buenos Aires, Argentina.
Fil: Freudenthal, Jan. University of Würzburg. Center for Computational and Theoretical Biology (CCTB). Germany.
Fil: Korte, Arthur. University of Würzburg. Center for Computational and Theoretical Biology (CCTB). Germany.
Fil: Munilla Leguizamón, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina. - CONICET. Buenos Aires, Argentina.
Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density (“Phantom Epistasis”). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation.
grafs.
description Fil: Schrauf, Matías Florián. Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv doi:10.1534/g3.120.401300
issn:2160-1836
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020schrauf
identifier_str_mv doi:10.1534/g3.120.401300
issn:2160-1836
url http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2020schrauf
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv G3: Genes, Genomes, Genetics
Vol.10, no.9
3137-3145
http://www.g3journal.org/
reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1844618862065090560
score 13.070432