Phantom epistasis in genomic selection: on the predictive ability of epistatic models
- Autores
- Schrauf, Matías Florián; Martini, Johannes W.R.; Simianer, Henner; de los Campos, Gustavo; Cantet, Rodolfo Juan Carlos; Freudenthal, Jan; Korte, Arthur; Munilla Leguizamon, Sebastian
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density (“Phantom Epistasis”). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation.
Fil: Schrauf, Matías Florián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Cátedra de Mejoramiento Genético Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martini, Johannes W.R.. Centro Internacional de Mejoramiento de Maíz y Trigo; México
Fil: Simianer, Henner. Universität Göttingen; Alemania
Fil: de los Campos, Gustavo. Michigan State University; Estados Unidos
Fil: Cantet, Rodolfo Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; Argentina
Fil: Freudenthal, Jan. Universität Würzburg; Alemania
Fil: Korte, Arthur. Universität Würzburg; Alemania
Fil: Munilla Leguizamon, Sebastian. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Cátedra de Mejoramiento Genético Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ADDITIVE EFFECTS
BREEDING
EPISTASIS
GENOMIC
GENOMICS
GENPRED
PREDICTION
RESOURCES
SHARED DATA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/142691
Ver los metadatos del registro completo
id |
CONICETDig_6b37b9f1ab0fc70d8b787b41105de71c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/142691 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Phantom epistasis in genomic selection: on the predictive ability of epistatic modelsSchrauf, Matías FloriánMartini, Johannes W.R.Simianer, Hennerde los Campos, GustavoCantet, Rodolfo Juan CarlosFreudenthal, JanKorte, ArthurMunilla Leguizamon, SebastianADDITIVE EFFECTSBREEDINGEPISTASISGENOMICGENOMICSGENPREDPREDICTIONRESOURCESSHARED DATAhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density (“Phantom Epistasis”). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation.Fil: Schrauf, Matías Florián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Cátedra de Mejoramiento Genético Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martini, Johannes W.R.. Centro Internacional de Mejoramiento de Maíz y Trigo; MéxicoFil: Simianer, Henner. Universität Göttingen; AlemaniaFil: de los Campos, Gustavo. Michigan State University; Estados UnidosFil: Cantet, Rodolfo Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; ArgentinaFil: Freudenthal, Jan. Universität Würzburg; AlemaniaFil: Korte, Arthur. Universität Würzburg; AlemaniaFil: Munilla Leguizamon, Sebastian. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Cátedra de Mejoramiento Genético Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaGenetics Society of America2020-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142691Schrauf, Matías Florián; Martini, Johannes W.R.; Simianer, Henner; de los Campos, Gustavo; Cantet, Rodolfo Juan Carlos; et al.; Phantom epistasis in genomic selection: on the predictive ability of epistatic models; Genetics Society of America; G3: Genes, Genomes, Genetics; 10; 9; 1-9-2020; 3137-31452160-1836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.g3journal.org/content/10/9/3137info:eu-repo/semantics/altIdentifier/doi/10.1534/g3.120.401300info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:08Zoai:ri.conicet.gov.ar:11336/142691instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:08.781CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Phantom epistasis in genomic selection: on the predictive ability of epistatic models |
title |
Phantom epistasis in genomic selection: on the predictive ability of epistatic models |
spellingShingle |
Phantom epistasis in genomic selection: on the predictive ability of epistatic models Schrauf, Matías Florián ADDITIVE EFFECTS BREEDING EPISTASIS GENOMIC GENOMICS GENPRED PREDICTION RESOURCES SHARED DATA |
title_short |
Phantom epistasis in genomic selection: on the predictive ability of epistatic models |
title_full |
Phantom epistasis in genomic selection: on the predictive ability of epistatic models |
title_fullStr |
Phantom epistasis in genomic selection: on the predictive ability of epistatic models |
title_full_unstemmed |
Phantom epistasis in genomic selection: on the predictive ability of epistatic models |
title_sort |
Phantom epistasis in genomic selection: on the predictive ability of epistatic models |
dc.creator.none.fl_str_mv |
Schrauf, Matías Florián Martini, Johannes W.R. Simianer, Henner de los Campos, Gustavo Cantet, Rodolfo Juan Carlos Freudenthal, Jan Korte, Arthur Munilla Leguizamon, Sebastian |
author |
Schrauf, Matías Florián |
author_facet |
Schrauf, Matías Florián Martini, Johannes W.R. Simianer, Henner de los Campos, Gustavo Cantet, Rodolfo Juan Carlos Freudenthal, Jan Korte, Arthur Munilla Leguizamon, Sebastian |
author_role |
author |
author2 |
Martini, Johannes W.R. Simianer, Henner de los Campos, Gustavo Cantet, Rodolfo Juan Carlos Freudenthal, Jan Korte, Arthur Munilla Leguizamon, Sebastian |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
ADDITIVE EFFECTS BREEDING EPISTASIS GENOMIC GENOMICS GENPRED PREDICTION RESOURCES SHARED DATA |
topic |
ADDITIVE EFFECTS BREEDING EPISTASIS GENOMIC GENOMICS GENPRED PREDICTION RESOURCES SHARED DATA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density (“Phantom Epistasis”). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation. Fil: Schrauf, Matías Florián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Cátedra de Mejoramiento Genético Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martini, Johannes W.R.. Centro Internacional de Mejoramiento de Maíz y Trigo; México Fil: Simianer, Henner. Universität Göttingen; Alemania Fil: de los Campos, Gustavo. Michigan State University; Estados Unidos Fil: Cantet, Rodolfo Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; Argentina Fil: Freudenthal, Jan. Universität Würzburg; Alemania Fil: Korte, Arthur. Universität Würzburg; Alemania Fil: Munilla Leguizamon, Sebastian. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Cátedra de Mejoramiento Genético Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density (“Phantom Epistasis”). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/142691 Schrauf, Matías Florián; Martini, Johannes W.R.; Simianer, Henner; de los Campos, Gustavo; Cantet, Rodolfo Juan Carlos; et al.; Phantom epistasis in genomic selection: on the predictive ability of epistatic models; Genetics Society of America; G3: Genes, Genomes, Genetics; 10; 9; 1-9-2020; 3137-3145 2160-1836 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/142691 |
identifier_str_mv |
Schrauf, Matías Florián; Martini, Johannes W.R.; Simianer, Henner; de los Campos, Gustavo; Cantet, Rodolfo Juan Carlos; et al.; Phantom epistasis in genomic selection: on the predictive ability of epistatic models; Genetics Society of America; G3: Genes, Genomes, Genetics; 10; 9; 1-9-2020; 3137-3145 2160-1836 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.g3journal.org/content/10/9/3137 info:eu-repo/semantics/altIdentifier/doi/10.1534/g3.120.401300 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Genetics Society of America |
publisher.none.fl_str_mv |
Genetics Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614321077747712 |
score |
13.070432 |